58 resultados para delay-sum
Resumo:
Delay between disclosure and reporting child sexual abuse is common and has significant implications for the prosecution of such offenses. While we might expect the relationship to be a linear one with longer delay reducing the likelihood of prosecution, the present study confirms a more complex interaction. Utilizing data from 2,079 police records in Northern Ireland, the study investigated the impact of reporting delay on pretrial criminal justice outcomes for child and adult reporters of child sexual abuse. While teenagers were found to be the group most disadvantaged by reporting delay, increased delay actually appeared advantageous for some groups, notably adult females reporting offenses that occurred when they were 0 to 6 years old. Conversely, adult males reporting child sexual abuse did not appear to benefit from increased delay, suggesting both an adult and gender bias within decision-making processes. The implications for future research are discussed.
Resumo:
In a recent paper (Automatica 49 (2013) 2860–2866), the Wirtinger-based inequality has been introduced to derive tractable stability conditions for time-delay or sampled-data systems. We point out that there exist two errors in Theorem 8 for the stability analysis of sampled-data systems, and the correct theorem is presented.
Resumo:
To evaluate the performance of the co-channel transmission based communication, we propose a new metric for area spectral efficiency (ASE) of interference limited ad-hoc network by assuming that the nodes are randomly distributed according to a Poisson point processes (PPP). We introduce a utility function, U = ASE/delay and derive the optimal ALOHA transmission probability p and the SIR threshold τ that jointly maximize the ASE and minimize the local delay. Finally, numerical results have been conducted to confirm that the joint optimization based on the U metric achieves a significant performance gain compared to conventional systems.
Resumo:
This paper investigates the achievable sum-rate of massive multiple-input multiple-output (MIMO) systems in the presence of channel aging. For the uplink, by assuming that the base station (BS) deploys maximum ratio combining (MRC) or zero-forcing (ZF) receivers, we present tight closed-form lower bounds on the achievable sum-rate for both receivers with aged channel state information (CSI). In addition, the benefit of implementing channel prediction methods on the sum-rate is examined, and closed-form sum rate lower bounds are derived. Moreover, the impact of channel aging and channel prediction on the power scaling law is characterized. Extension to the downlink scenario and multi-cell scenario are also considered. It is found that, for a system with/without channel prediction, the transmit power of each user can be scaled down at most by 1= p M (where M is the number of BS antennas), which indicates that aged CSI does not degrade the power scaling law, and channel prediction does not enhance the power scaling law; instead, these phenomena affect the achievable sum-rate by degrading or enhancing the effective signal to interference and noise ratio, respectively.
Resumo:
Temporal overlapping of ultra-short and focussed laser pulses is a particularly challenging task, as this timescale lies orders of magnitude below the typical range of fast electronic devices. Here we present an optical technique that allows for the measurement of the temporal delay between two focussed and ultra-short laser pulses. This method is virtually applicable to any focussing geometry and relative intensity of the two lasers. Experimental implementation of this technique provides excellent quantitative agreement with theoretical expectations. The proposed technique will prove highly beneficial for high-power multiple-beam laser experiments.
Resumo:
This paper investigates the achievable sum-rate of uplink massive multiple-input multiple-output (MIMO) systems considering a practical channel impairment, namely, aged channel state information (CSI). Taking into account both maximum ratio combining (MRC) and zero-forcing (ZF) receivers at the base station, we present tight closed-form lower bounds on the sum-rate for both receivers, which provide efficient means to evaluate the sum-rate of the system. More importantly, we characterize the impact of channel aging on the power scaling law. Specifically, we show that the transmit power of each user can be scaled down by 1/√(M), which indicates that aged CSI does not affect the power scaling law; instead, it causes only a reduction on the sum rate by reducing the effective signal-to-interference-and-noise ratio (SINR).
Resumo:
We investigate the achievable ergodic sum-rate of multi-user multiple-input multiple-output systems in Ricean fading channels. We first derive a lower bound on the average signal-to-leakage-and-noise ratio by utilizing the Mullen's inequality, which is then used to analyze the effect of channel mean information on the achievable sum-rate. With these results, a novel statistical-eigenmode space-division multipleaccess downlink transmission scheme is proposed. For this scheme, we derive an exact closed-form expression for the achievable ergodic sum-rate. Our results show that the achievable ergodic sum-rate converges to a saturation value in the high signal-to-noise ratio (SNR) region and reaches to a lower limit value in the lower Ricean K-factor range. In addition, we present tractable upper and lower bounds, which are shown to be tight for any SNR and Ricean K-factor value. Finally, the theoretical analysis is validated via numerical simulations.