130 resultados para cytoskeleton disruption
Resumo:
Latent inhibition (LI) is a measure of reduced learning about a stimulus to which there has been prior exposure without any consequence. It therefore requires a comparison between a pre-exposed (PE) and a non-pre-exposed (NPE) condition. Since, in animals, LI is disrupted by amphetamines and enhanced by antipsychotics, LI disruption has been proposed as a measure of the characteristic attentional deficit in schizophrenia: the inability to ignore irrelevant stimuli. The findings in humans are, however, inconsistent. In particular, a recent investigation suggested that since haloperidol disrupted LI in healthy volunteers, and LI was normal in non-medicated patients with schizophrenia, the previous findings in schizophrenic patients were entirely due to the negative effects of their medication on LI (Williams et al., 1998). We conducted two studies of antipsychotic drug effects on auditory LI using a within-subject, parallel group design in healthy volunteers. In the first of these, single doses of haloperidol (1 mg. i.v.) were compared with paroxetine (20 mg p.o.) and placebo, and in the second, chlorpromazine (100 mg p.o.) was compared with lorazepam (2 mg. p.o.) and placebo. Eye movements, neuropsychological test performance (spatial working memory (SWM), Tower of London and intra/extra dimensional shift, from the CANTAB test battery) and visual analogue rating scales, were also included as other measures of attention and frontal lobe function. Haloperidol was associated with a non-significant reduction in LI scores, and dysphoria/akathisia (Barnes Akathisia Rating Scale) in three-quarters of the subjects. The LI finding may be explained by increased distractibility which was indicated by an increase in antisaccade directional errors in this group. In contrast, LI was significantly increased by chlorpromazine but not by an equally sedative dose of lorazepam (both drugs causing marked decreases in peak saccadic velocity). Paroxetine had no effect on LI, eye movements or CANTAB neuropsychological test performance. Haloperidol was associated with impaired SWM, which correlated with the degree of dysphoria/akathisia, but no other drug effects on CANTAB measures were detected. We conclude that the effect of antipsychotics on LI is both modality and pharmacologically dependent and that further research using a wider range of antipsychotic compounds is necessary to clarify the cognitive effects of these drugs, and to determine whether there are important differences between them.
Resumo:
BACKGROUND:Deficits in prepulse inhibition (PPI) of the acoustic startle response have been suggested as a potentially useful endophenotype for schizophrenia spectrum disorders and may explain certain symptoms and cognitive deficits observed in the psychoses. PPI deficits have also been found in mania, but it remains to be confirmed whether this dysfunction is present in the euthymic phase of bipolar disorder.METHOD: Twenty-three adult patients with DSM-IV bipolar disorder were compared to 20 controls on tests of acoustic startle reactivity and PPI of the startle response. Sociodemographic and treatment variables were recorded and symptom scores assessed using the Hamilton Depression Inventory and the Young Mania Rating Scale.RESULTS:Overall, the patient and control groups demonstrated similar levels of startle reactivity and PPI, although there was a trend for the inter-stimulus interval to differentially affect levels of PPI in the two groups.CONCLUSIONS: In contrast to bipolar patients experiencing a manic episode, general levels of PPI were normal in this euthymic sample. Further studies are required to confirm this finding and to determine the mechanisms by which this potential disruption/normalization occurs. It is suggested that an examination of PPI in a high-risk group is required to fully discount dysfunctional PPI as a potentially useful endophenotype for bipolar disorder.
Resumo:
Resistance in Fasciola hepatica to triclabendazole (Fasinex) has emerged in several countries. Benzimidazole resistance in parasitic nematodes has been linked to a single amino acid substitution (phenylalanine to tyrosine) at position 200 on the [beta]-tubulin molecule. Sequencing of [beta]-tubulin cDNAs from triclabendazole-susceptible and triclabendazole-resistant flukes revealed no amino acid differences between their respective primary amino acid sequences. In order to investigate the mechanism of triclabendazole resistance, triclabendazole-susceptible and triclabendazole-resistant flukes were incubated in vitro with triclabendazole sulphoxide (50 [mu]g/ml). Scanning and transmission electron microscopy revealed extensive damage to the tegument of triclabendazole-susceptible F. hepatica, whereas triclabendazole-resistant flukes showed only localized and relatively minor disruption of the tegument covering the spines. Immunocytochemical studies, using an anti-tubulin antibody, showed that tubulin organization was disrupted in the tegument of triclabendazole-susceptible flukes. No such disruption was evident in triclabendazole-resistant F. hepatica. The significance of these findings is discussed with regard to the mechanism of triclabendazole resistance in F. hepatica.
Resumo:
In human neutrophils, beta2 integrin engagement mediated a decrease in GTP-bound Rac1 and Rac2. Pretreatment of neutrophils with LY294002 or PP1 (inhibiting phosphatidylinositol 3-kinase (PI 3-kinase) and Src kinases, respectively) partly reversed the beta2 integrin-induced down-regulation of Rac activities. In contrast, beta2 integrins induced stimulation of Cdc42 that was independent of Src family members. The PI 3-kinase dependency of beta2 integrin-mediated decrease in GTP-bound Rac could be explained by an enhanced Rac-GAP activity, since this activity was blocked by LY204002, whereas PP1 only had a minor effect. The fact that only Rac1 but not Rac2 (the dominating Rac) redistributed to the detergent-insoluble fraction and that it was independent of GTP loading excludes the possibility that down-regulation of Rac activities was due to depletion of GTP-bound Rac from the detergent-soluble fraction. The beta2 integrin-triggered relocalization of Rac1 to the cytoskeleton was enabled by a PI 3-kinase-induced dissociation of Rac1 from LyGDI. The dissociations of Rac1 and Rac2 from LyGDI also explained the PI 3-kinase-dependent translocations of Rac GTPases to the plasma membrane. However, these accumulations of Rac in the membrane, as well as that of p47phox and p67phox, were also regulated by Src tyrosine kinases. Inasmuch as Rac GTPases are part of the NADPH oxidase and the respiratory burst is elicited in neutrophils adherent by beta2 integrins, our results indicate that activation of the NADPH oxidase does not depend on the levels of Rac-GTP but instead requires a beta2 integrin-induced targeting of the Rac GTPases as well as p47phox and p67phox to the plasma membrane.
Resumo:
BRCA1 is a well described breast cancer susceptibility gene thought to be involved primarily in DNA repair. However, mutation within the BRCA1 transcriptional domain is also implicated in neoplastic transformation of mammary epithelium, but responsible mechanisms are unclear. Here we show in a rat mammary model system that wild type (WT) BRCA1 specifically represses the expression of osteopontin (OPN), a multifunctional estrogen-responsive gene implicated in oncogenic transformation, particularly that of the breast. WT.BRCA1 selectively binds OPN-activating transcription factors estrogen receptor alpha, AP-1, and PEA3, inhibits OPN promoter transactivation, and suppresses OPN mRNA and protein both from an endogenous gene and a relevant model inducible gene. WT.BRCA1 also inhibits OPN-mediated neoplastic transformation characterized by morphology change, anchorage-independent growth, adhesion to fibronectin, and invasion through Matrigel. A mutant BRCA1 allele (Mut.BRCA1) associated with familial breast cancer lacks OPN suppressor effects, binds to WT.BRCA1, and impedes WT.BRCA1 suppression of OPN. Stable transfection of rat breast tumor cell lines with Mut.BRCA1 dramatically up-regulates OPN protein and induces anchorage independent growth. In human primary breast cancer, BRCA1 mutation is significantly associated with OPN overexpression. Taken together, these data suggest that BRCA1 mutation may confer increased tissue-specific cancer risk, in part by disruption of BRCA1 suppression of OPN gene transcription.
Resumo:
Analysis of the bacterial population of soil surface samples from a creosote-contaminated site showed that up to 50% of the culturable micro-organisms detected were able to utilise a mixture of cresols. From fifty different microbial isolates fourteen that could utilise more than one cresol isomer were selected and identified by 16S rRNA analysis. Eight isolates were Rhodococcus strains and six were Pseudomonas strains. In general, the Rhodococcus strains exhibited a broader growth substrate range than the Pseudomonas strains. The distribution of various extradiol dioxygenase (edo) genes, previously associated with aromatic compound degradation in rhodococci, was determined for the Rhodococcus strains by PCR detection and Southern-blot hybridization. One strain, Rhodococcus sp. I1 exhibited the broadest growth substrate range and possessed five different edo genes. Gene disruption experiments indicated that two genes (edoC and edoD) were associated with isopropylbenzene and naphthalene catabolism respectively. The other Rhodococcus strains also possessed some of the edo genes and one (edoB) was present in all of the Rhodococcus strains analysed. None of the rhodococcal edo genes analysed were present in the Pseudomonas strains isolated from the site. It was concluded that individual strains of Rhodococcus possess a wide degradative ability and may be very important in the degradation of complex mixtures of substrates found in creosote.
Resumo:
Dysfunction of the actin cytoskeleton is a key event in the pathogenesis of diabetic nephropathy. We previously reported that certain cytoskeletal genes are upregulated in mesangial cells exposed to a high extracellular glucose concentration. One such gene, caldesmon, lies on chromosome 7q35, a region linked to nephropathy in family studies, making it a candidate susceptibility gene for diabetic nephropathy. We screened all exons, untranslated regions, and a 5-kb region upstream of the gene for variation using denaturing high-performance liquid chromatography technology. An A>G single nucleotide polymorphism (SNP) at position -579 in the promoter region was associated with nephropathy in a case-control study using 393 type 1 diabetic patients from Northern Ireland (odds ratio [OR] 1.38, 95% CI 1.02–1.86, P = 0.03). A similar trend was found in an independent sample from a second center. When the sample groups were combined (n = 606), the association between the -579G allele and nephropathy remained significant (OR 1.35, 1.07–1.70, P = 0.01). The haplotype structure in the surrounding 7-kb region was determined. No single haplotype was more strongly associated with nephropathy than the -579A>G SNP. These results suggest a role for the caldesmon gene in susceptibility to diabetic nephropathy in type 1 diabetes.
Resumo:
The Northern Hemisphere cooling event 8200 years ago is believed to represent the last known major freshwater pulse into the North Atlantic as a result of the final collapse of the North American Laurentide ice sheet. This pulse of water is generally believed to have occurred independently of orbital variations and provides an analogue for predicted increases in high-latitude precipitation and ice melt as a result of anthropogenically driven future climate change. The precise timing, duration and magnitude of this event, however, are uncertain, with suggestions that the 100-yr meltwater cooling formed part of a longer-term cold period in the early Holocene. Here we undertook a multiproxy, high-resolution investigation of a peat sequence at Dooagh, Achill Island, on the west coast of Ireland, to determine whether the 8200-year cold event impacted upon the terrestrial vegetation immediately downwind of the proposed changes in the North Atlantic. We find clear evidence for an oscillation in the early Holocene using various measures of pollen, indicating a disruption in the vegetation leading to a grassland-dominated landscape, most probably driven by changes in precipitation rather than temperature. Radiocarbon dating was extremely problematic, however, with bulk peat samples systematically too young for the North Atlantic event, suggesting significant contamination from downward root penetration. The sustained disruption to vegetation over hundreds of years at Dooagh indicates the landscape was impacted by a long-term cooling event in the early Holocene, and not the single century length 8200-year meltwater event proposed in many other records in the North Atlantic region.
Resumo:
Septins are an evolutionarily conserved group of GTP-binding and filament-forming proteins that belong to the large superclass of P-loop GTPases. While originally discovered in yeast as cell division cycle mutants with cytokinesis defects, they are now known to have diverse cellular roles which include polarity determination, cytoskeletal reorganization, membrane dynamics, vesicle trafficking, and exocytosis. Septin proteins form homo- and hetero-oligomeric polymers which can assemble into higher-order filaments. They are also known to interact with components of the cytoskeleton, ie actin and tubulin. The precise role of GTP binding is not clear but a current model suggests that it is associated with conformational changes which alter binding to other proteins. There are at least 12 human septin genes, and although information on expression patterns is limited, most undergo complex alternative splicing with some degree of tissue specificity. Nevertheless, an increasing body of data implicates the septin family in the pathogenesis of diverse disease states including neoplasia, neurodegenerative conditions, and infections. Here the known biochemical properties of mammalian septins are reviewed in the light of the data from yeast and other model organisms. The data implicating septins in human disease are considered and a model linking these data is proposed. It is posited that septins can act as regulatable scaffolds where the stoichiometry of septin associations, modifications, GTP status, and the interactions with other proteins allow the regulation of key cellular processes including polarity determination. Derangements of such septin scaffolds thus explain the role of septins in disease states. Copyright © 2004 Pathological Society of Great Britain and Ireland.
Resumo:
PURPOSE: MicroRNAs (miRNAs) play a global role in regulating gene expression and have important tissue-specific functions. Little is known about their role in the retina. The purpose of this study was to establish the retinal expression of those miRNAs predicted to target genes involved in vision. METHODS: miRNAs potentially targeting important "retinal" genes, as defined by expression pattern and implication in disease, were predicted using a published algorithm (TargetScan; Envisioneering Medical Technologies, St. Louis, MO). The presence of candidate miRNAs in human and rat retinal RNA was assessed by RT-PCR. cDNA levels for each miRNA were determined by quantitative PCR. The ability to discriminate between miRNAs varying by a single nucleotide was assessed. The activity of miR-124 and miR-29 against predicted target sites in Rdh10 and Impdh1 was tested by cotransfection of miRNA mimics and luciferase reporter plasmids. RESULTS: Sixty-seven miRNAs were predicted to target one or more of the 320 retinal genes listed herein. All 11 candidate miRNAs tested were expressed in the retina, including miR-7, miR-124, miR135a, and miR135b. Relative levels of individual miRNAs were similar between rats and humans. The Rdh10 3'UTR, which contains a predicted miR-124 target site, mediated the inhibition of luciferase activity by miR-124 mimics in cell culture. CONCLUSIONS: Many miRNAs likely to regulate genes important for retinal function are present in the retina. Conservation of miRNA retinal expression patterns from rats to humans supports evidence from other tissues that disruption of miRNAs is a likely cause of a range of visual abnormalities.
Resumo:
Unregulated apoptosis can be due to a disruption in the balance and control of both intra- and inter-cellular proteolytic activities leading to various disease states. Many proteases involved in apoptotic processes are yet to be identified; however, several are already well characterized. Caspases traditionally held the predominant role as prime mediators of execution. However, latterly, evidence has accumulated that non-caspases, including calpains, cathepsins, granzymes and the proteasome have roles in mediating and promoting cell death. Increasingly, research is implicating serine proteases within apoptotic processing, particularly in the generation of nuclear events such as condensation, fragmentation and DNA degradation observed in late-stage apoptosis. Serine proteases therefore are emerging as providing additional or alternative therapeutic targets.
Resumo:
Full-length transient receptor potential (TRP) cation channel TRPC4alpha and shorter TRPC4beta lacking 84 amino acids in the cytosolic C terminus are expressed in smooth muscle and endothelial cells where they regulate membrane potential and Ca(2+) influx. In common with other "classical" TRPCs, TRPC4 is activated by G(q)/phospholipase C-coupled receptors, but the underlying mechanism remains elusive. Little is also known about any isoform-specific channel regulation. Here we show that TRPC4alpha but not TRPC4beta was strongly inhibited by intracellularly applied phosphatidylinositol 4,5-bisphosphate (PIP(2)). In contrast, several other phosphoinositides (PI), including PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), had no effect or even potentiated TRPC4alpha indicating that PIP(2) inhibits TRPC4alpha in a highly selective manner. We show that PIP(2) binds to the C terminus of TRPC4alpha but not that of TRPC4beta in vitro. Its inhibitory action was dependent on the association of TRPC4alpha with actin cytoskeleton as it was prevented by cytochalasin D treatment or by the deletion of the C-terminal PDZ-binding motif (Thr-Thr-Arg-Leu) that links TRPC4 to F-actin through the sodium-hydrogen exchanger regulatory factor and ezrin. PIP(2) breakdown appears to be a required step in TRPC4alpha channel activation as PIP(2) depletion alone was insufficient for channel opening, which additionally required Ca(2+) and pertussis toxin-sensitive G(i/o) proteins. Thus, TRPC4 channels integrate a variety of G-protein-dependent stimuli, including a PIP(2)/cytoskeleton dependence reminiscent of the TRPC4-like muscarinic agonist-activated cation channels in ileal myocytes.
Resumo:
A sub-chronic administration of phencyclidine to the rat brings about enduring pathophysiological and cognitive changes that resemble some features of schizophrenia. The present study aimed to determine whether the behavioural consequence of this phencyclidine regime extends to a long-term disruption of social interaction that might provide a parallel with some negative symptoms of the disease. Rats were treated with phencyclidine (2mg/kg bi-daily for 1 week) or vehicle followed by a drug-free period. Social interaction was assessed 24h, 1 week, 3 weeks and 6 weeks post-treatment. A long-lasting disturbance of social behaviour was observed in the phencyclidine group, namely more contact and non-contact interaction with an unfamiliar target rat at all time points. Six weeks post-phencyclidine, analysis of brains showed a reduction in expression of parvalbumin immunoreactive neurons in the hippocampus with significant reductions localised to the CA1 and dentate gyrus regions. These results show that sub-chronic phencyclidine produces long-lasting disruptions in social interaction that, however, do not model the social withdrawal seen in patients with schizophrenia. These disturbances of social behaviour may be associated with concurrent pathophysiological brain changes.
Resumo:
Maerl is a general term used for loose-lying subtidal beds of nodular coralline red algae. Maerl beds support high associated invertebrate and algal biodiversity, and are subject to European and UK conservation legislation. Previous investigations have shown European maerl to be ecologically fragile due to growth rates of approximately I mm per year. However, these very slow growth rates have hampered attempts to determine the key ecological requirements and sensitivity characteristics of living maerl. In this study, photosynthetic capacity determined by pulse amplitude modulated (PAM) fluorometry was used as a diagnostic of stress caused by various environmental conditions. Maerl species were exposed to a range of temperatures, salinities and light levels and to burial, fragmentation, desiccation and heavy metal treatment. Maerl was not as susceptible as previously assumed to extremes of salinity, temperature and heavy metal pollution, but burial, especially in fine or anoxic sediments, was lethal or caused significant stress. These data indicate that the main anthropogenic hazard for live maerl and the rich communities that depend on them is smothering by fine sediment, such as that produced by trawling or maerl extraction, from sewage discharges or shellfish and fish farm waste, and sedimentation resulting from disruption to tidal flow. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
One can partially eliminate motor skills acquired through practice in the hours immediately following practice by applying repetitive transcranial stimulation (rTMS) over the primary motor cortex. The disruption of acquired levels of performance has been demonstrated on tasks that are ballistic in nature. The authors investigated whether motor recall on a discrete aiming task is degraded following a disruption of the primary motor cortex induced via rTMS. Participants (N = 16) maintained acquired performance levels and patterns of muscle activity following the application of rTMS. despite a reduction in corticospinal excitability. Disruption of the primary motor cortex during a consolidation period did not influence the retention of acquired skill in this type of discrete visuomotor task.