142 resultados para corticotropin releasing factor
Resumo:
Purpose: Up to now, there have been no established predictive markers for response to epidermal growth factor receptor (EGFR/HER1/erbB1) inhibitors alone and in combination with chemotherapy in colorectal cancer. To identify markers that predict response to EGFR-based chemotherapy regimens, we analyzed the response of human colorectal cancer cell lines to the EGFR-tyrosine kinase inhibitor, gefitinib (Iressa, AstraZeneca, Wilmington, DE), as a single agent and in combination with oxaliplatin and 5-fluorouracil (5-FU). Experimental Design: Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and crystal violet cell viability assays and analyzed by ANOVA. Apoptosis was measured by flow cytometry, poly(ADP-ribose) polymerase, and caspase 3 cleavage. EGFR protein phosphorylation was detected by Western blotting. Results: Cell lines displaying high constitutive EGFR phosphorylation (a surrogate marker for EGFR activity) were more sensitive to gefitinib. Furthermore, in cell lines exhibiting low constitutive EGFR phosphorylation, an antagonistic interaction between gefitinib and oxaliplatin was observed, whereas in cell lines with high basal EGFR phosphorylation, the interaction was synergistic. In addition, oxaliplatin treatment increased EGFR phosphorylation in those cell lines in which oxaliplatin and gefitinib were synergistic but down-regulated EGFR phosphorylation in those lines in which oxaliplatin and gefitinib were antagonistic. In contrast to oxaliplatin, 5-FU treatment increased EGFR phosphorylation in all cell lines and this correlated with synergistic decreases in cell viability when 5-FU was combined with gefitinib. Conclusions: These results suggest that phospho-EGFR levels determine the sensitivity of colorectal cancer cells to gefitinib alone and that chemotherapy-mediated changes in phospho-EGFR levels determine the nature of interaction between gefitinib and chemotherapy.
Resumo:
Granulocyte colony-stimulating factor (G-CSF) levels were studied in 23 patients (10 myeloma, 13 relapsed Hodgkin's disease, non-Hodgkin's lymphoma or germ cell tumours), post autologous peripheral blood stem cell transplantation (PBSCT). The two groups had similar previous chemotherapy and numbers of CD34+ cells transplanted. All patients received G-CSF by injection starting 8 d post transplantation. Twenty out of 23 patients showed raised endogenous levels of G-CSF before cytokine administration. Myeloma patients showed significantly lower levels of endogenous G-CSF than the other patients (0.767 versus 3.262 ng/ml, P <0.05). Further rises in G-CSF levels were seen following the administration of exogenous G-CSF which then fell, despite ongoing administration of G-CSF, as neutrophil recovery occurred.
Resumo:
The present study was undertaken to test whether inhibition of the proangiogenic inflammatory cytokine tumor necrosis factor (TNF)-alpha can modulate retinal hypoxia and preretinal neovascularization in a murine model of oxygen-induced retinopathy (OIR). OIR was produced in TNF-alpha-/- and wild-type (WT) control C57B6 neonatal mice by exposure to 75% oxygen between postnatal days 7 and 12 (P7 to P12). Half of each WT litter was treated with the cytokine inhibitor semapimod (formerly known as CNI-1493) (5 mg/kg) by daily intraperitoneal injection from the time of reintroduction to room air at P12 until P17. The extent of preretinal neovascularization and intraretinal revascularization was quantified by image analysis of retinal flat-mounts and retinal hypoxia correlated with vascularization by immunofluorescent localization of the hypoxia-sensitive drug pimonidazole (hypoxyprobe, HP). HP adducts were also characterized by Western analysis and quantified by competitive enzyme-linked immunosorbent assay. TNF-alpha-/- and WT mice showed a similar sensitivity to hyperoxia-induced retinal ischemia at P12. At P13 some delay in early reperfusion was evident in TNFalpha-/- and WT mice treated with semapimod. However, at P17 both these groups had significantly better vascular recovery with less ischemic/hypoxic retina and preretinal neovascularization compared to untreated retinopathy in WT mice. Immunohistochemistry showed deposition of HP in the avascular inner retina but not in areas underlying preretinal neovascularization, indicating that such aberrant vasculature can reduce retinal hypoxia. Inhibition of TNF-alpha significantly, improves vascular recovery within ischemic tissue and reduces pathological neovascularization in OIR. HP provides a useful tool for mapping and quantifying tissue hypoxia in experimental ischemic retinopathy.