239 resultados para concrete buildings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A voluminous literature exists on the analysis of water-soluble ions extracted from gypsum crusts and patinas formed on building surfaces. However, less data is available on the intermediate dust layer and the important role its complex matrix and constituents play in crust/patina formation. To address this issue, surface dust samples were collected from two buildings in the city of Budapest. Substrate properties, different pollution levels and environmental variations were considered by collecting samples from a city centre granite building exposed to intense traffic conditions and from an oolitic limestone church situated in a pedestrian area outside and high above the main pollution zone. Selective extraction examines both water-soluble ions (Ca2+, Mg2+, Na+, K+, Cl-, NO3- SO42-) and selected elements (Fe, Mn, Zn, Cu, Cr, Pb, Ni) from the water-soluble, exchangeable/carbonate, amorphous Mn, amorphous Fe/Mn, crystalline Fe/Mn, organic and residual phases, their mobility and potential to catalyse heterogeneous surface reactions. Salt weathering processes are highlighted by high concentrations of water-soluble Ca2+, Na+, Cl- and SO42-- at both sites. Manganese, Zn and Cu and to a lesser extent Pb and Ni, are very mobile in the city centre dust, where 30%, 54%, 38%, 11% and 11% of their totals are bound by the water-soluble phase, respectively. Church dust shows a sharp contrast for Mn, Zn, Cu and Pb with only 3%, 1%, 12% and 3% of their totals being bound by the water-soluble phase respectively. This may be due to (a) different environmental conditions at the church e.g. lower humidity (b) continuous replenishment of salts under intensive city centre traffic conditions (c) enrichment in oxidisable organic carbon by a factor of 4.5 and a tenfold increase in acidity in the city centre dust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews statistical models obtained from a composite factorial design study, which was carried out to determine the influence of three key parameters of mixture composition on filling ability and passing ability of self-consolidating concrete (SCC). This study was a part of the European project “Testing SCC”- GRD2-2000-30024. The parameters considered in this study were the dosages of water and high-range water-reducing admixture (HRWRA), and the volume of coarse aggregates. The responses of the derived statistical models were slump flow, T50 , T60, V-funnel flow time, Orimet flow time, and blocking ratio (L-box). The retention of these tests was also measured at 30 and 60 minutes after adding the first water. The models are valid for mixtures made with 188 to 208 L/m3 (317 to 350 lb/yd3) of water, 3.8 to 5.8 kg/m3 (570 to 970 mL/100 kg of binder) of HRWRA, and 220 to 360 L/m3 (5.97 to 9.76 ft3/yd3) of coarse aggregates. The utility of such models to optimize concrete mixtures and to achieve a good balance between filling ability and passing ability is discussed. Examples highlighting the usefulness of the models are presented using isoresponse surfaces to demonstrate single and coupled effects of mixture parameters on slump flow, T50 , T60 , V-funnel flow time, Orimet flow time, and blocking ratio. The paper also illustrates the various trade-offs between the mixture parameters on the derived responses that affected the filling and the passing ability.