84 resultados para computer aided design
Resumo:
In this paper, a novel framework for dense pixel matching based on dynamic programming is introduced. Unlike most techniques proposed in the literature, our approach assumes neither known camera geometry nor the availability of rectified images. Under such conditions, the matching task cannot be reduced to finding correspondences between a pair of scanlines. We propose to extend existing dynamic programming methodologies to a larger dimensional space by using a 3D scoring matrix so that correspondences between a line and a whole image can be calculated. After assessing our framework on a standard evaluation dataset of rectified stereo images, experiments are conducted on unrectified and non-linearly distorted images. Results validate our new approach and reveal the versatility of our algorithm.
Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals (Invited paper)
Resumo:
The basic concepts and phenomenology of wave mixing and harmonic generation are reviewed in context of the recent advances in the enhanced nonlinear activity in metamaterials and photonic crystals. The effects of dispersion, field confinement and phase synchronism are illustrated by the examples of the on-purpose designed artificial nonlinear structures. (c) 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 22:469482, 2012.
Resumo:
Digital manufacturing techniques can simulate complex assembly sequences using computer-aided design-based, as-designed' part forms, and their utility has been proven across several manufacturing sectors including the ship building, automotive and aerospace industries. However, the reality of working with actual parts and composite components, in particular, is that geometric variability arising from part forming or processing conditions can cause problems during assembly as the as-manufactured' form differs from the geometry used for any simulated build validation. In this work, a simulation strategy is presented for the study of the process-induced deformation behaviour of a 90 degrees, V-shaped angle. Test samples were thermoformed using pre-consolidated carbon fibre-reinforced polyphenylene sulphide, and the processing conditions were re-created in a virtual environment using the finite element method to determine finished component angles. A procedure was then developed for transferring predicted part forms from the finite element outputs to a digital manufacturing platform for the purpose of virtual assembly validation using more realistic part geometry. Ultimately, the outcomes from this work can be used to inform process condition choices, material configuration and tool design, so that the dimensional gap between as-designed' and as-manufactured' part forms can be reduced in the virtual environment.
Resumo:
Defining Simulation Intent involves capturing high level modelling and idealisation decisions in order to create an efficient and fit-for-purpose analysis. These decisions are recorded as attributes of the decomposed design space.
An approach to defining Simulation Intent is described utilising three known technologies: Cellular Modelling, the subdivision of space into volumes of simulation significance (structures, gas paths, internal and external airflows etc.); Equivalencing, maintaining a consistent and coherent description
of the equivalent representations of the spatial cells in different analysis models; and Virtual Topology, which offers tools for partitioning and de-partitioning the model without disturbing the manufacturing oriented design geometry. The end result is a convenient framework to which high level analysis attributes can be applied, and from which detailed analysis models can be generated
with a high degree of controllability, repeatability and automation. There are multiple novel aspects to the approach, including its reusability, robustness to changes in model topology and the inherent links created between analysis models at different levels of fidelity and physics.
By utilising Simulation Intent, CAD modelling for simulation can be fully exploited and simulation work-flows can be more readily automated, reducing many repetitive manual tasks (e.g. the definition of appropriate coupling between elements of different types and the application of boundary conditions). The approach has been implemented and tested with practical examples, and
significant benefits are demonstrated.
Resumo:
This paper examines the applicability of an immersive virtual reality (VR) system to the process of organizational learning in a manufacturing context. The work focuses on the extent to which realism has to be represented in a simulated product build scenario in order to give the user an effective learning experience for an assembly task. Current technologies allow the visualization and manipulation of objects in VR systems but physical behaviors such as contact between objects and the effects of gravity are not commonly represented in off the shelf simulation solutions and the computational power required to facilitate these functions remains a challenge. This work demonstrates how physical behaviors can be coded and represented through the development of more effective mechanisms for the computer aided design (CAD) and VR interface.
Resumo:
Social signals and interpretation of carried information is of high importance in Human Computer Interaction. Often used for affect recognition, the cues within these signals are displayed in various modalities. Fusion of multi-modal signals is a natural and interesting way to improve automatic classification of emotions transported in social signals. Throughout most present studies, uni-modal affect recognition as well as multi-modal fusion, decisions are forced for fixed annotation segments across all modalities. In this paper, we investigate the less prevalent approach of event driven fusion, which indirectly accumulates asynchronous events in all modalities for final predictions. We present a fusion approach, handling short-timed events in a vector space, which is of special interest for real-time applications. We compare results of segmentation based uni-modal classification and fusion schemes to the event driven fusion approach. The evaluation is carried out via detection of enjoyment-episodes within the audiovisual Belfast Story-Telling Corpus.
Resumo:
This paper outlines the importance of robust interface management for facilitating finite element analysis workflows. Topological equivalences between analysis model representations are identified and maintained in an editable and accessible manner. The model and its interfaces are automatically represented using an analysis-specific cellular decomposition of the design space. Rework of boundary conditions following changes to the design geometry or the analysis idealization can be minimized by tracking interface dependencies. Utilizing this information with the Simulation Intent specified by an analyst, automated decisions can be made to process the interface information required to rebuild analysis models. Through this work automated boundary condition application is realized within multi-component, multi-resolution and multi-fidelity analysis workflows.
Resumo:
New techniques are presented for using the medial axis to generate decompositions on which high quality block-structured meshes with well-placed mesh singularities can be generated. Established medial-axis-based meshing algorithms are effective for some geometries, but in general, they do not produce the most favourable decompositions, particularly when there are geometric concavities. This new approach uses both the topological and geometric information in the medial axis to establish a valid and effective arrangement of mesh singularities for any 2-D surface. It deals with concavities effectively and finds solutions that are most appropriate to the geometric shapes. Resulting meshes are shown for a number of example models.
Resumo:
PURPOSE: This systematic review aimed to report and explore the survival of dental veneers constructed from non-feldspathic porcelain over 5 and 10 years.
MATERIALS AND METHODS: A total of 4,294 articles were identified through a systematic search involving all databases in the Cochrane Library, MEDLINE (OVID), EMBASE, Web of Knowledge, specific journals (hand-search), conference proceedings, clinical trials registers, and collegiate contacts. Articles, abstracts, and gray literature were sought by two independent researchers. There were no language limitations. One hundred sixteen studies were identified for full-text assessment, with 10 included in the analysis (5 qualitative, 5 quantitative). Study characteristics and survival (Kaplan-Meier estimated cumulative survival and 95% confidence interval [CI]) were extracted or recalculated. A failed veneer was one which required an intervention that disrupted the original marginal integrity, had been partially or completely lost, or had lost retention more than twice. A meta-analysis and sensitivity analysis of Empress veneers was completed, with an assessment of statistical heterogeneity and publication bias. Clinical heterogeneity was explored for results of all veneering materials from included studies.
RESULTS: Within the 10 studies, veneers were fabricated with IPS Empress, IPS Empress 2, Cerinate, and Cerec computer-aided design/computer-assisted manufacture (CAD/CAM) materials VITA Mark I, VITA Mark II, Ivoclar ProCad. The meta-analysis showed the pooled estimate for Empress veneers to be 92.4% (95% CI: 89.8% to 95.0%) for 5-year survival and 66% to 94% (95% CI: 55% to 99%) for 10 years. Data regarding other non-feldspathic porcelain materials were lacking, with only a single study each reporting outcomes for Empress 2, Cerinate, and various Cerec porcelains over 5 years. The sensitivity analysis showed data from one study had an influencing and stabilizing effect on the 5-year pooled estimate.
CONCLUSION: The long-term outcome (> 5 years) of non-feldspathic porcelain veneers is sparsely reported in the literature. This systematic review indicates that the 5-year cumulative estimated survival for etchable non-feldspathic porcelain veneers is over 90%. Outcomes may prove clinically acceptable with time, but evidence remains lacking and the use of these materials for veneers remains experimental.
Resumo:
Molecular Dynamics Simulations (MDS) are constantly being used to make important contributions to our fundamental understanding of material behaviour, at the atomic scale, for a variety of thermodynamic processes. This chapter shows that molecular dynamics simulation is a robust numerical analysis tool in addressing a range of complex nanofinishing (machining) problems that are otherwise difficult or impossible to understand using other methods. For example the mechanism of nanometric cutting of silicon carbide is influenced by a number of variables such as machine tool performance, machining conditions, material properties, and cutting tool performance (material microstructure and physical geometry of the contact) and all these variables cannot be monitored online through experimental examination. However, these could suitably be studied using an advanced simulation based approach such as MDS. This chapter details how MD simulation can be used as a research and commercial tool to understand key issues of ultra precision manufacturing research problems and a specific case was addressed by studying diamond machining of silicon carbide. While this is appreciable, there are a lot of challenges and opportunities in this fertile area. For example, the world of MD simulations is dependent on present day computers and the accuracy and reliability of potential energy functions [109]. This presents a limitation: Real-world scale simulation models are yet to be developed. The simulated length and timescales are far shorter than the experimental ones which couples further with the fact that contact loading simulations are typically done in the speed range of a few hundreds of m/sec against the experimental speed of typically about 1 m/sec [17]. Consequently, MD simulations suffer from the spurious effects of high cutting speeds and the accuracy of the simulation results has yet to be fully explored. The development of user-friendly software could help facilitate molecular dynamics as an integral part of computer-aided design and manufacturing to tackle a range of machining problems from all perspectives, including materials science (phase of the material formed due to the sub-surface deformation layer), electronics and optics (properties of the finished machined surface due to the metallurgical transformation in comparison to the bulk material), and mechanical engineering (extent of residual stresses in the machined component) [110]. Overall, this chapter provided key information concerning diamond machining of SiC which is classed as hard, brittle material. From the analysis presented in the earlier sections, MD simulation has helped in understanding the effects of crystal anisotropy in nanometric cutting of 3C-SiC by revealing the atomic-level deformation mechanisms for different crystal orientations and cutting directions. In addition to this, the MD simulation revealed that the material removal mechanism on the (111) surface of 3C-SiC (akin to diamond) is dominated by cleavage. These understandings led to the development of a new approach named the “surface defect machining” method which has the potential to be more effective to implement than ductile mode micro laser assisted machining or conventional nanometric cutting.
Resumo:
Over recent years, ionic liquids have emerged as a class of novel fluids that have inspired the development of a number of new products and processes. The ability to design these materials with specific functionalities and properties means that they are highly relevant to the growing philosophy of chemical-product design. This is particularly appropriate in the context of a chemical industry that is becoming increasingly focussed on small-volume, high-value added products with relatively short times to market. To support such product and process development, a number of tools can be utilised. A key requirement is that the tool can predict the physical properties and activity coefficients of multi-component mixtures and, if required, model the process in which the materials will be used. Multi-scale simulations that span density functional theory (DFT) to process-engineering computations can address the relevant time and length scales and have increased in usage with the availability of cheap and powerful computers. Herein we will discuss the area of engineering calculations relating to the design of ionic liquid processes, that is, the computational tools that bridge this gap and allow for process simulation tools to utilise and assist in the design of ionic liquids. It will be shown that, at present, it is possible to use available tools to estimate many important properties of ionic liquids and mixtures containing them with a sufficient level of accuracy for preliminary design and selection.
Resumo:
Bulk gallium nitride (GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities. Current virtual topology technology is extended to allow the virtual partitioning of volume cells and the topological queries required to carry out each operation are provided. Virtual representations are robustly linked to the underlying geometric definition through an analysis topology. The analysis topology and all associated virtual and topological dependencies are automatically updated after each virtual operation, providing the link to the underlying CAD geometry. Therefore, a valid description of the analysis topology, including relative orientations, is maintained. This enables downstream operations, such as the merging or partitioning of virtual entities, and interrogations, such as determining if a specific meshing strategy can be applied to the virtual volume cells, to be performed on the analysis topology description. As the virtual representation is a non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. This enables the advantages of non-manifold modelling to be exploited within the manifold modelling environment of a major commercial CAD system, without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence, whilst the original CAD geometry is not disturbed. Robust definitions of the topological and virtual dependencies enable the same virtual topology definitions to be accessed, interrogated and manipulated within multiple different CAD packages and linked to the underlying geometry.
Resumo:
This paper examines the integration of a tolerance design process within the Computer-Aided Design (CAD) environment having identified the potential to create an intelligent Digital Mock-Up [1]. The tolerancing process is complex in nature and as such reliance on Computer-Aided Tolerancing (CAT) software and domain experts can create a disconnect between the design and manufacturing disciplines It is necessary to implement the tolerance design procedure at the earliest opportunity to integrate both disciplines and to reduce workload in tolerance analysis and allocation at critical stages in product development when production is imminent.
The work seeks to develop a methodology that will allow for a preliminary tolerance allocation procedure within CAD. An approach to tolerance allocation based on sensitivity analysis is implemented on a simple assembly to review its contribution to an intelligent DMU. The procedure is developed using Python scripting for CATIA V5, with analysis results aligning with those in literature. A review of its implementation and requirements is presented.