208 resultados para composition operators
Resumo:
High-resolution observations of five OB-type main-sequence stars in the Large Magellanic Cloud (LMC) have been obtained with the UCL echelle spectrograph on the 3.9-m Anglo-Australian Telescope. These spectra have been analysed using LTE model- atmosphere techniques, to derive stellar atmospheric parameters and chemical compositions. As these stars are located within the hydrogen burning main-sequence band, their surface abundances should reflect those of the present-day interstellar medium. Detailed line-by-line differential analyses have been undertaken relative to Galactic comparison stars. We conclude that there exists a general metal deficiency of - 0.31 +/- 0.04 dex within the LMC, and find no significant abundance variations between cluster and field stars. There is also tentative evidence to suggest a lower oxygen to iron abundance ratio, and an over-deficiency of magnesium relative to the other alpha-elements. These are discussed in terms of previous abundance analyses and models of discontinuous (or bursting) star formation within the LMC. Finally, there is some evidence to suggest a greater chemical enrichment of material within the H. region LH104.
Resumo:
High-resolution spectroscopic VLT/UVES observations are presented for the B-type main-sequence star, AV 304, in the Small Magellanic Cloud (SMC). These spectra have been analysed using LTE model-atmosphere techniques, to derive stellar atmospheric parameters and chemical compositions. As AV 304 is located within the hydrogen burning main-sequence band, its chemical composition should reflect that of the SMC interstellar medium (ISM). A detailed line-by-line differential analysis has been undertaken relative to a Galactic comparison star. A general metal deficiency for the a-process elements O, Si & S of -0.43 +/- 0.05 dex is found for AV 304, with iron having a similar underabundance. Oxygen may be relatively over- abundant by similar to0.1 dex and carbon and aluminium underabundant by similar to0.2 dex. A large nitrogen underabundance (of -1.2 dex relative to hydrogen and -0.7 dex relative to iron) is found. This is interpreted in terms of the CNO bi-cycle having been suppressed in the SMC. Furthermore, the large nitrogen deficiency is in excellent agreement with that found for SMC H II regions. Indeed, this represents a first for stellar astrophysics - confirming the low base-line nitrogen composition of the SMC ISM (viz. 12+log(N/H) similar to 6.66 +/- 0.10 dex).
Resumo:
Absolute and differential chemical abundances are presented for the largest group of massive stars in M31 studied to date. These results were derived from intermediate resolution spectra of seven B-type supergiants, lying within four OB associations covering a galactocentric distance of 5-12 kpc. The results are mainly based on an LTE analysis, and we additionally present a full non-LTE, unified model atmosphere analysis of one star (OB 78-277) to demonstrate the reliability of the differential LTE technique. A comparison of the stellar oxygen abundance with that of previous nebular results shows that there is an off set of between similar to0.15-0.4 dex between the two methods which is critically dependent on the empirical calibration adopted for the R 23 parameter with [O/H]. However within the typical errors of the stellar and nebular analyses (and given the strength of dependence of the nebular results on the calibration used) the oxygen abundances determined in each method are fairly consistent. We determine the radial oxygen abundance gradient from these stars, and do not detect any systematic gradient across this galactocentric range. We find that the inner regions of M31 are not, as previously thought, very "metal rich". Our abundances of C, N, O, Mg, Si, Al, S and Fe in the M31 supergiants are very similar to those of massive stars in the solar neighbourhood.
Resumo:
In the case of a simple quantum system, we investigate the possibility of defining meaningful probabilities for a quantity that cannot be represented by a Hermitian operator. We find that the consistent-histories approach, recently applied to the case of quantum traversal time [N. Yamada, Phys. Rev. Lett. 83, 3350 (1999)], does not provide a suitable criterion and we dispute Yamada's claim of finding a simple solution to the tunneling-time problem. Rather, we define the probabilities for certain types of generally nonorthogonal decomposition of the system's quantum state. These relate to the interaction between the system and its environment, can be observed in a generalized von Neumann measurement, and are consistent with a particular class of positive-operator-valued measures.