58 resultados para charge-transfer complex
Resumo:
Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing.
Resumo:
As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles. This admits a ready description of ionic polarizability and crystal field splitting. It is necessary in constructing such a model to find a number of parameters that mimic their more exact counterparts in the density functional theory. We describe in detail how this is done using a combination of intuition, exact analytical fitting, and a genetic optimization algorithm. Having obtained model parameters we show that this constitutes a transferable scheme that can be applied rather universally to small and medium sized organic molecules. We have shown that the model gives a good account of static structural and dynamic vibrational properties of a library of molecules, and finally we demonstrate the model's capability by showing a real time simulation of an enolization reaction in aqueous solution. In two subsequent papers, we show that the model is a great deal more general in that it will describe solvents and solid substrates and that therefore we have created a self consistent quantum mechanical scheme that may be applied to simulations in heterogeneous catalysis.
Resumo:
Robust, bilayer heterojunction photodiodes of TiO2-WO3 were prepared successfully by a simple, low-cost powder pressing technique followed by heat-treatment. Exclusive photoirradiation of the TiO2 side of the photodiode resulted in a rapid colour change (dark blue) on the WO3 surface as a result of reduction of W6+ to W5+ (confirmed by X-ray photoelectron spectroscopy). This colour was long lived and shown to be stable in a dry environment in air for several hours. A similar photoirradiation experiment in the presence of a mask showed that charge transfer across the heterojunction occurred approximately normal to the TiO2 surface, with little smearing out of the mask image. As a result of the highly efficient vectorial charge separation, the photodiodes showed a tremendous increase in photocatalytic activity for the degradation of stearic acid, compared to wafers of the respective individual materials when tested separately.
Resumo:
The four DNA nucleosides guanosine, adenosine, cytidine and thymidine have been produced in the gas phase by a laser thermal desorption source, and irradiated by a beam of protons with 5 keV kinetic energy. The molecular ions as well as energetic neutrals formed have been analyzed by mass spectrometry in order to shed light on the ionization and fragmentation processes triggered by proton collision. A range of 8-20 eV has been estimated for the binding energy of the electron captured by the proton. Glycosidic bond cleavage between the base and sugar has been observed with a high probability for all nucleosides, resulting in predominantly intact base ions for guanosine, adenosine, and cytidine but not for thymidine where intact sugar ions are dominant. This behavior is influenced by the ionization energies of the nucleobases (G < A < C < T), which seems to determine the localization of the charge following the initial ionization. This charge transfer process can also be inferred from the production of protonated base ions, which have a similar dependence on the base ionization potential. Other dissociation pathways have also been identified, including further fragmentation of the base and sugar moieties for thymidine and guanosine, respectively, and partial breakup of the sugar ring without glycosidic bond cleavage mainly for adenosine and cytidine. These results show that charge localization following ionization by proton irradiation is important in determining dissociation pathways of isolated nucleosides, which could in turn influence direct radiation damage in DNA.
Resumo:
In this work, we have successfully synthesized Au nanoparticles (NPs) in situ in PEDOT:PSS deploying a room temperature atmospheric pressure microplasma. The size of the AuNPs is a function of the gold salt precursor concentration and the plasma processing time. The Au/polymer colloids after processing remain well dispersed over a prolonged period of time. Both gold salt concentration and the plasma processing time have influence on the electrical conductivity of the dried Au/PEDOT:PSS nanocomposite films. An enhanced electrical conductivity of the Au/PEDOT:PSS nanocomposite films has been attributed to (i) the interfacial ligand formation between the S atoms in PEDOT:PSS molecules and the Au surface and (ii) charge transfer from the AuNPs to the holes of PEDOT:PSS molecules.
Resumo:
The ultrafast photo-physical properties of DNA are crucial in providing a stable basis for life. Although the DNA bases efficiently absorb ultraviolet (UV) radiation, this energy can be dissipated to the surrounding environment by the rapid conversion of electronic energy to vibrational energy within about a picosecond. The intrinsic nature of this internal conversion process has previously been demonstrated through gas phase experiments on the bases, supported by theoretical calculations. De-excitation rates appear to be accelerated when individual bases are hydrogen bonded to solvent molecules or their complementary Watson-Crick pair. In this paper, the first gas-phase measurements of electronic relaxation in DNA nucleosides following UV excitation are reported. Using a pump-probe ionization scheme, the lifetimes for internal conversion to the ground state following excitation at 267 nm are found to be reduced by around a factor of two for adenosine, cytidine and thymidine compared with the isolated bases. These results are discussed in terms of a recent proposition that a charge transfer state provides an additional internal conversion pathway mediated by proton transfer through a sugar to base hydrogen bond.
Resumo:
The effect of sodium-modification on the catalyst and electrocatalytic properties of a platinum catalyst supported on a YSZ solid electrolyte was studied. Increasing the sodium coverage on the catalyst surface appears to block some of the three-phase boundary (tpb) sites and reduces the rate of the charge transfer reaction. The promotion of the platinum surface reaction (ethylene oxidation) seems to a first approximation to be a function of the rate of oxygen supply or removal to or from the surface irrespective of whether this is contaminated by sodium or not (samples with sodium contamination require a higher overpotential to achieve the same current density as a clean sample because of poisoning in the tpb). At high negative polarisations (oxygen removed from the surface) the sodium contaminated samples show a significant increase in rate, possibly due to the decomposition of e.g. sodium hydroxides and carbonates. © 2012 Elsevier B.V.
Resumo:
A nanocomposite porous electrode structure consisting of hierarchical iodine-doped zinc oxide (I-ZnO) aggregates combined with the two simple solution-processed interfacial modifications i.e. a ZnO compact layer (CL) and a TiO2 protective layer (PL) has been developed in order to understand electron transport and recombination in the photoanode matrix, together with boosting the conversion efficiency of I-ZnO based dye-sensitized solar cells (DSCs). Electrochemical impedance spectra demonstrate that ZnO CL pre-treatment and TiO2 PL post-treatment synergistically reduce charge-transfer resistance and suppress electron recombination. Furthermore, the electron lifetime in two combined modifications of IZnO + CL + PL photoelectrode is the longest in comparison with the other three photoelectrodes. As a consequence, the overall conversion efficiency of I-ZnO + CL + PL DSC is significantly enhanced to 6.79%, with a 36% enhancement compared with unmodified I-ZnO DSC. Moreover, the stability of I-ZnO + CL + PL cell is improved as compared to I-ZnO one. The mechanism of electron transfer and recombination upon the introduction of ZnO CL and TiO2 PL is also proposed in this work.
Resumo:
One of the most important components in electrochemical storage devices (batteries and supercapacitors) is undoubtedly the electrolyte. The basic function of any electrolyte in these systems is the transport of ions between the positive and negative electrodes. In addition, electrochemical reactions occurring at each electrode/electrolyte interface are the origin of the current generated by storage devices. In other words, performances (capacity, power, efficiency and energy) of electrochemical storage devices are strongly related to the electrolyte properties, as well as, to the affinity for the electrolyte to selected electrode materials. Indeed, the formulation of electrolyte presenting good properties, such as high ionic conductivity and low viscosity, is then required to enhance the charge transfer reaction at electrode/electrolyte interface (e.g. charge accumulation in the case of Electrochemical Double Layer Capacitor, EDLC). For practical and safety considerations, the formulation of novel electrolytes presenting a low vapor pressure, a large liquid range temperature, a good thermal and chemical stabilities is also required.
This lecture will be focused on the effect of the electrolyte formulation on the performances of electrochemical storage devices (Li-ion batteries and supercapacitors). During which, a summary of the physical, thermal and electrochemical data obtained by our group, recently, on the formulation of novel electrolyte-based on the mixture of an ionic liquid (such as EmimNTf2 and Pyr14NTf2) and carbonate or dinitrile solvents will be presented and commented. The impact of the electrolyte formulation on the storage performances of EDLC and Li-ion batteries will be also discussed to further understand the relationship between electrolyte formulation and electrochemical performances. This talk will also be an opportunity to further discuss around the effects of additives (SEI builder: fluoroethylene carbonate and vinylene carbonate), ionic liquids, structure and nature of lithium salt (LiTFSI vs LiPF6) on the cyclability of negative electrode to then enhance the electrolyte formulation. For that, our recent results on TiSnSb and graphite negative electrodes will be presented and discussed, for example 1,2.
1-C. Marino, A. Darwiche1, N. Dupré, H.A. Wilhelm, B. Lestriez, H. Martinez, R. Dedryvère, W. Zhang, F. Ghamouss, D. Lemordant, L. Monconduit “ Study of the Electrode/Electrolyte Interface on Cycling of a Conversion Type Electrode Material in Li Batteries” J. Phys.chem. C, 2013, 117, 19302-19313
2- Mouad Dahbi, Fouad Ghamouss, Mérièm Anouti, Daniel Lemordant, François Tran-Van “Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte” 2013, 43, 4, 375-385.
Resumo:
Predicted 20 years ago, positron binding to neutral atoms has not yet been observed experimentally. A scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for charge transfer in Ps collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.
Resumo:
High-performance and low-cost bifunctional electrocatalysts play crucial roles in oxygen reduction and evolution reactions. Herein, a novel three-dimensional (3D) bifunctional electrocatalyst was prepared by embedding CoO nanoparticles into nitrogen and sulfur co-doped carbon nanofiber networks (denoted as CoO@N/S-CNF) through a facile approach. The carbon nanofiber networks were derived from a nanostructured biological material which provided abundant functional groups to nucleate and anchor nanoparticles while retaining its interconnected 3D porous structure. The composite possesses a high specific surface area and graphitization degree, which favors both mass transport and charge transfer for electrochemical reaction. The CoO@N/S-CNF not only exhibits highly efficient catalytic activity towards oxygen reduction reaction (ORR) in alkaline media with an onset potential of about 0.84 V, but also shows better stability and stronger resistance to methanol than Pt/C. Furthermore, it only needs an overpotential of 1.55 V to achieve a current density of 10 mA cm-2, suggesting that it is an efficient electrocatalyst for oxygen evolution reaction (OER). The ΔE value (oxygen electrode activity parameter) of CoO@N/S-CNF is calculated to be 0.828 V, which demonstrates that the composite could be a promising bifunctional electrocatalyst for both ORR and OER.
Resumo:
In this work, Pr0.6Sr0.4FeO3-δ -Ce0.9Pr0.1O2-δ (PSFO-CPO) nanofibers were synthesized by a one-step electrospin technique for use in intermediate-temperature solid oxide fuel cell (IT-SOFC) applications. PSFO-CPO nanofibers were produced with a diameter of about 100nm and lengths exceeding tens of microns. The thermal expansion coefficient (TEC) matches with standard GDC electrolytes and the resulting conductivity also satisfies the needs of IT-SOFCs cathodes. EIS analysis of the nanofiber structured electrode gives a polarization resistance of 0.072Ωcm2 at 800°C, smaller than that from the powdered cathode with the same composition. The excellent electrochemical performance can be attributed to the well-constructed microstructure of the nanofiber structured cathode, which promotes surface oxygen diffusion and charge transfer processes. All the results imply that the one-step electrospin method is a facile and practical way of improving the cathode properties and that PSFO-CPO is a promising cathode material for IT-SOFCs.
Resumo:
A selected ion flow tube study of the reactions of a series of gas-phase atomic cations (S+, Xe+, O+, Kr+, N+, Ar+ and Ne+) and molecular ions (SF n+ (n = 1-5), CFn+ (n = 1-3), CF2Cl+, H3O+, NO+, N 2O+, CO2+, CO+, and N2+) spanning a large range of recombination energies (6.3-21.6 eV), with acetone, 1,1,1-trifluoroacetone, and hexafluoroacetone has been undertaken with the objective of exploring the nature of the reaction ion chemistry as the methyl groups in acetone are substituted for CF3. The reaction rate coefficients and product ion branching ratios for all 66 reactions, measured at 298 K, are reported. The experimental reaction rate coefficients are compared to theoretically calculated collisional values. Several distinct reaction processes were observed among the large number of reactions studied, including charge transfer (non-dissociative and dissociative), abstraction, ion-molecule associations and, in the case of the reactions involving the reagent ion H3O+, proton transfer.