61 resultados para capability configuration
Resumo:
The safety of our food is an essential requirement of society. One well-recognised threat is that of chemical contamination of our food, where low-molecular-weight compounds such as biotoxins, drug residues and pesticides are present. Low-cost, rapid screening procedures are sought to discriminate the suspect samples from the population, thus selecting only these to be forwarded for confirmatory analysis. Many biosensor assays have been developed as screening tools in food contaminant analysis, but these tend to be electrochemical, fluorescence or surface plasmon resonance based. An alternative approach is the use of biolayer interferometry, which has become established in drug discovery and life science studies but is only now emerging as a potential tool in the analysis of food contaminants. A biolayer interferometry biosensor was assessed using domoic acid as a model compound. Instrument repeatability was tested by simultaneously producing six calibration curves showing replicate repeatability (n = 2) ranging from 0.1 to 6.5 % CV with individual concentration measurements (n = 12) ranging from 4.3 to 9.3 % CV, giving a calibration curve midpoint of 7.5 ng/ml (2.3 % CV (n = 6)). Reproducibility was assessed by producing three calibration curves on different days, giving a midpoint of 7.5 ng/ml (3.4 %CV (n = 3)). It was further shown, using assay development techniques, that the calibration curve midpoint could be adjusted from 10.4 to 1.9 ng/ml by varying assay parameters before the simultaneous construction of three calibration curves in matrix and buffer. Sensitivity of the assay compared favourably with previously published biosensor data for domoic acid. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
In today’s world, supply chains are becoming more complex and more vulnerable due to increased interdependency of multiple threats. This paper investigates the vulnerability sources in context of sustainable supply chain in order to minimize the impact of uncertain events. The capability-based perspective is discussed in this paper to understand the strategies to improve the resilience of the supply chain. Paper argues that organisations must think beyond their boundaries to accumulate or integrate network resources and develop critical collaborative capabilities across the supply chain to successfully encounter future disruptions.
Resumo:
Abstract Image
Stereochemical evidence is presented to demonstrate that (−)-inthomycin C has (3R)- and not (3S)-stereochemistry. Careful reappraisal of the previously published work2−5 now indicates that the Hatakeyama, Hale, Ryu, and Taylor teams all have synthesized (−)-(3R)-inthomycin C. The newly measured [α]D of pure (−)-(3R)-inthomycin C (98% ee) is −7.9 (c 0.33, CHCl3) and not −41.5 (c 0.1, CHCl3) as was previously reported in 2012.
Resumo:
WcaJ is an Escherichia coli membrane enzyme catalysing the biosynthesis of undecaprenyl-diphosphate-glucose, the first step in the assembly of colanic acid exopolysaccharide. WcaJ belongs to a large family of polyisoprenyl-phosphate hexose-1-phosphate transferases (PHPTs) sharing a similar predicted topology consisting of an N-terminal domain containing four transmembrane helices (TMHs), a large central periplasmic loop, and a C-terminal domain containing the fifth TMH (TMH-V) and a cytosolic tail. However, the topology of PHPTs has not been experimentally validated. Here, we investigated the topology of WcaJ using a combination of LacZ/PhoA reporter fusions and sulfhydryl
labelling by PEGylation of novel cysteine residues introduced into a cysteine-less WcaJ. The results showed that the large central loop and the C-terminal tail both reside in the cytoplasm and are separated by TMH-V, which does not fully span the membrane, likely forming a "hairpin" structure. Modelling of TMH-V revealed that a highly conserved proline might contribute to a helix-break-helix structure in all PHPT members. Bioinformatic analyses show that all of these features are conserved in PHPT homologues from
Gram-negative and Gram-positive bacteria. Our data demonstrate a novel topological configuration for PHPTs, which is proposed as a signature for all members of this enzyme family
Resumo:
The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics.
Resumo:
As part of any drilling cuttings pile removal process the requirement for monitoring the release of contaminants into the marine environment will be critical. Traditional methods for such monitoring involve taking samples for laboratory analysis. This process is time consuming and only provides data on spot samples taken from a limited number of locations and time frames. Such processes, therefore, offer very restricted information. The need for improved marine sensors for monitoring contaminants is established. We report here the development and application of a multi-capability optical sensor for the real-time in situ monitoring of three key marine environmental and offshore/oil parameters: hydrocarbons, synthetic-based fluids and heavy metal concentrations. The use of these sensors will be a useful tool for real-time in situ environmental monitoring during the process of decommissioning offshore structures. Multi-capability array sensors could also provide information on the dispersion of contamination from drill cuttings piles either while they are in situ or during their removal.
Resumo:
The increased construction and reconstruction of smart substations has exposed a problem with version management of substation configuration description language (SCL) files due to frequent changes. This paper proposes a comparative approach for differentiation of smart substation SCL configuration files. A comparison model for SCL configuration files is built in this method, which is based on the SCL structure and abstract model defined by IEC 61850. The proposed approach adopts the algorithms of depth-first traversal, sorting, and cross comparison in order to rapidly identify differences of changed SCL configuration files. This approach can also be utilized to detect malicious tampering or illegal manipulation tailoring for SCL files. SCL comparison software is developed using the Qt platform to validate the feasibility and effectiveness of the proposed approach.
Resumo:
Complex collaboration in rapidly changing business environments create challenges for management capability in Utility Horizontal Supply Chains (UHSCs) involving the deploying and evolving of performance measures. The aim of the study is twofold. First, there is a need to explore how management capability can be developed and used to deploy and evolve Performance Measurement (PM), both across a UHSC and within its constituent organisations, drawing upon a theoretical nexus of Dynamic Capability (DC) theory and complementary Goal Theory. Second, to make a contribution to knowledge by empirically building theory using these constructs to show the management motivations and behaviours within PM-based DCs. The methodology uses an interpretive theory building, multiple case based approach (n=3) as part of a USHC. The data collection methods include, interviews (n=54), focus groups (n=10), document analysis and participant observation (reflective learning logs) over a five-year period giving longitudinal data. The empirical findings lead to the development of a conceptual framework showing that management capabilities in driving PM deployment and evolution can be represented as multilevel renewal and incremental Dynamic Capabilities, which can be further understood in terms of motivation and behaviour by Goal-Theoretic constructs. In addition three interrelated cross cutting themes of management capabilities in consensus building, goal setting and resource change were identified. These management capabilities require carefully planned development and nurturing within the UHSC.
Resumo:
Relative strengths of surface interaction for individual carbon atoms in acyclic and cyclic hydrocarbons adsorbed on alumina surfaces are determined using chemically resolved 13C nuclear magnetic resonance (NMR) T1 relaxation times. The ratio of relaxation times for the adsorbed atoms T1,ads to the bulk liquid relaxation time T1,bulk provides an indication of the mobility of the atom. Hence a low T1,ads/T1,bulk ratio indicates a stronger surface interaction. The carbon atoms associated with unsaturated bonds in the molecules are seen to exhibit a larger reduction in T1 on adsorption relative to the aliphatic carbons, consistent with adsorption occurring through the carbon-carbon multiple bonds. The relaxation data are interpreted in terms of proximity of individual carbon atoms to the alumina surface and adsorption conformations are inferred. Furthermore, variations of interaction strength and molecular configuration have been explored as a function of adsorbate coverage, temperature, surface pre-treatment, and in the presence of co-adsorbates. This relaxation time analysis is appropriate for studying the behaviour of hydrocarbons adsorbed on a wide range of catalyst support and supported-metal catalyst surfaces, and offers the potential to explore such systems under realistic operating conditions when multiple chemical components are present at the surface.
Resumo:
Institutions involved in the provision of tertiary education across Europe are feeling the pinch. European universities, and other higher education (HE) institutions, must operate in a climate where the pressure of government spending cuts (Garben, 2012) is in stark juxtaposition to the EU’s strategy to drive forward and maintain a growth of student numbers in the sector (eurostat, 2015).
In order to remain competitive, universities and HE institutions are making ever-greater use of electronic assessment (E-Assessment) systems (Chatzigavriil et all, 2015; Ferrell, 2012). These systems are attractive primarily because they offer a cost-effect and scalable approach for assessment. In addition to scalability, they also offer reliability, consistency and impartiality; furthermore, from the perspective of a student they are most popular because they can offer instant feedback (Walet, 2012).
There are disadvantages, though.
First, feedback is often returned to a student immediately on competition of their assessment. While it is possible to disable the instant feedback option (this is often the case during an end of semester exam period when assessment scores must be can be ratified before release), however, this option tends to be a global ‘all on’ or ‘all off’ configuration option which is controlled centrally rather than configurable on a per-assessment basis.
If a formative in-term assessment is to be taken by multiple groups of
students, each at different times, this restriction means that answers to each question will be disclosed to the first group of students undertaking the assessment. As soon as the answers are released “into the wild” the academic integrity of the assessment is lost for subsequent student groups.
Second, the style of feedback provided to a student for each question is often limited to a simple ‘correct’ or ‘incorrect’ indicator. While this type of feedback has its place, it often does not provide a student with enough insight to improve their understanding of a topic that they did not answer correctly.
Most E-Assessment systems boast a wide range of question types including Multiple Choice, Multiple Response, Free Text Entry/Text Matching and Numerical questions. The design of these types of questions is often quite restrictive and formulaic, which has a knock-on effect on the quality of feedback that can be provided in each case.
Multiple Choice Questions (MCQs) are most prevalent as they are the most prescriptive and therefore most the straightforward to mark consistently. They are also the most amenable question types, which allow easy provision of meaningful, relevant feedback to each possible outcome chosen.
Text matching questions tend to be more problematic due to their free text entry nature. Common misspellings or case-sensitivity errors can often be accounted for by the software but they are by no means fool proof, as it is very difficult to predict in advance the range of possible variations on an answer that would be considered worthy of marks by a manual marker of a paper based equivalent of the same question.
Numerical questions are similarly restricted. An answer can be checked for accuracy or whether it is within a certain range of the correct answer, but unless it is a special purpose-built mathematical E-Assessment system the system is unlikely to have computational capability and so cannot, for example, account for “method marks” which are commonly awarded in paper-based marking.
From a pedagogical perspective, the importance of providing useful formative feedback to students at a point in their learning when they can benefit from the feedback and put it to use must not be understated (Grieve et all, 2015; Ferrell, 2012).
In this work, we propose a number of software-based solutions, which will overcome the limitations and inflexibilities of existing E-Assessment systems.
Resumo:
Significant reduction of inherent large divergence of the laser driven MeV proton beams is achieved by strong (of the order of 10^9 V/m ) electrostatic focussing field generated in the confined region of a suitably shaped structure attached to the proton generating foil. The scheme exploits the positively charging of the target following an intense laser interaction. Reduction in the proton beam divergence, and commensurate increase in proton flux is observed while preserving the beam laminarity. The underlying mechanism has been established by the help of particle tracing simulations. Dynamic focussing power of the lens, mainly due to the target discharging, can also be exploited in order to bring up the desired chromaticity of the lens for the proton beams of broad energy range.
Electron-impact ionization of diatomic molecules using a configuration-average distorted-wave method
Resumo:
Electron-impact ionization cross sections for diatomic molecules are calculated in a configuration-average distorted-wave method. Core bound orbitals for the molecular ion are calculated using a single-configuration self-consistent-field method based on a linear combination of Slater-type orbitals. The core bound orbitals are then transformed onto a two-dimensional (r,θ) numerical lattice from which a Hartree potential with local exchange is constructed. The single-particle Schrödinger equation is then solved for the valence bound orbital and continuum distorted-wave orbitals with S-matrix boundary conditions. Total cross section results for H2 and N2 are compared with those from semiempirical calculations and experimental measurements.
Resumo:
The design of efficient assembly systems can significantly contribute to the profitability of products and the competitiveness of manufacturing industries. The configuration of a an efficient assembly line can be supported by suitable methodologies and techniques, such as design for manufacture and assembly, assembly sequence planning, assembly line balancing, lean manufacturing and optimization techniques. In this paper, these methods are applied with reference to the industrial case study of the assembly line of a Skycar light aircraft. The assembly process sequence is identified taking into account the analysis of the assembly structure and the required precedence constraints, and diverse techniques are applied to optimize the assembly line performance. Different line configurations are verified through discrete event simulation to assess the potential increase of efficiency and throughput in a digital environment and propose the most suitable configuration of the assembly line.