337 resultados para bone radiography
Resumo:
To investigate the immunosuppressive properties of mesenchymal stem cells (MSCs), in the present study we examined the immunogenicity of undifferentiated and tri-lineage (chondrocytes, osteoblasts and adipocytes) differentiated rat bone marrow-derived MSCs under xenogeneic conditions. After chondrogenic-differentiation, rat bone marrow-derived MSCs stimulated human peripheral blood monocyte-derived DCs (hDCs), leading to 8- and 4-fold higher lymphocyte proliferation and cytotoxicity than that of undifferentiated MSCs. The Chondrogenic-differentiated MSCs were chemotactic to hDCs in Dunn chamber chemotaxis system and were rosetted by hDCs inrosette assays. Flow cytometry analysis revealed that chondrogenic-differentiated MSCs had promoted hDCs maturation causing higher CD83 expression in hDCs, whereas undifferentiated MSCs, osteogenic-and adipogenic-differentiated MSCs showed inhibitory effect on hDCs maturation. The co-stimulatory molecules B7 were up-regulated only in the chondrogenic-differentiated MSCs. After blocking B7 molecules with specific monoclonal antibodies in the chondrogenic-differentiated MSCs, CD83 expression of co-cultured hDCs was greatly reduced. In conclusion, chondrogenic differentiation may increase the immunogenicity of MSCs, leading to stimulation of DCs. The up-regulated expression of B7 molecules on the chondrogenic differentiated MSCs may be partially responsible for this event.
Resumo:
Protons accelerated by a picosecond laser pulse have been used to radiograph a 500 mu m diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 mu m and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion. Asymmetries were diagnosed both during the early and stagnation stages of the implosion. Comparison with analytic scattering theory and simple Monte Carlo simulations were consistent with a 3 +/- 1 g/cm(3) core with diameter 85 +/- 10 mu m. Scaling simulations show that protons > 50 MeV are required to diagnose asymmetry in ignition scale conditions.
Resumo:
During bone development and repair, angiogenesis, osteogenesis and bone remodelling are closely associated processes that share some common mediators. In the present study non-adherent human bone marrow mononuclear cells under the induction of sRANKL and M-CSF, differentiated into osteoclasts with TRAP positive staining, VNR expression, and Ca-P resorptive activity. The effects of various combinations of rhBMP-2 (0, 3, 30, 300 ng/ml) and rhVEGF (0, 25 ng/ml) on osteoclastogenesis potentials were examined in this experimental system. The percentages of TRAP-positive multiple nucleated cells represent osteoclast differentiation potential and the percentages of resorptive areas in the Ca-P coated plates resemble osteoclast resorption capability. The presence of rhBMP-2 at 30 and 300 ng/ml showed inhibitory effects on osteoclast differentiation and their resorptive capability in the human osteoclast culture system. rhVEGF (25 ng/ml) enhanced the resorptive function of osteoclast whenever it was used alone or combined with 3 ng/ml rhBMP-2. However, rhVEGF induced resorptive function was inhibited by 30 ng/ml and 300 ng/ml rhBMP-2 at a dose-dependent manner. Statistical analysis demonstrated that an interactive effect exists between rhBMP-2 and rhVEGF on human osteoclastogenesis. These findings suggested that an interactive regulation may exist between BMPs and VEGF signaling pathways during osteoclastogenesis, exact mechanisms are yet to be elucidated.
Resumo:
Using a validated tetracycline (tet)-regulated MCF7-founder (MCF7F) expression system to modulate expression of CD44 standard form (CD44s), we report the functional importance of CD44s and that of a novel transcriptional target of hyaluronan (HA)/CD44s signaling, EMS1/cortactin, in underpinning breast cancer metastasis. In functional experiments, tet-regulated induction of CD44s potentiated the migration and invasion of MCF7F cells through HA-supplemented Matrigel. EMS1/cortactin was identified by expression profiling as a novel transcriptional target of HA/CD44 signaling, an association validated by quantitative PCR and immunoblotting experiments in a range of breast cancer cell lines. The mechanistic basis underpinning CD44-promoted transcription of EMS1/cortactin was shown to be dependent upon a NFB mechanism, since pharmacological inhibition of IKinase-2 or suppression of p65 Rel A expression attenuated CD44-induced increases in cortactin mRNA transcript levels. Overexpression of a c-myc tagged murine cortactin construct in the weakly invasive, CD44-deficient MCF7F and T47D cells potentiated their invasion. Furthermore, the functional importance of cortactin to CD44s-promoted metastasis was demonstrated by selective suppression of cortactin in CD44-expressing MCF7F-B5 and MDA-MB-231 breast cancer cells using RNAi, which was shown to result in attenuated CD44-promoted invasion and CD44-promoted adhesion to bone marrow endothelial cells (BMECs).