51 resultados para bio-fuels
Resumo:
This study introduces an inexact, but ultra-low power, computing architecture devoted to the embedded analysis of bio-signals. The platform operates at extremely low voltage supply levels to minimise energy consumption. In this scenario, the reliability of static RAM (SRAM) memories cannot be guaranteed when using conventional 6-transistor implementations. While error correction codes and dedicated SRAM implementations can ensure correct operations in this near-threshold regime, they incur in significant area and energy overheads, and should therefore be employed judiciously. Herein, the authors propose a novel scheme to design inexact computing architectures that selectively protects memory regions based on their significance, i.e. their impact on the end-to-end quality of service, as dictated by the bio-signal application characteristics. The authors illustrate their scheme on an industrial benchmark application performing the power spectrum analysis of electrocardiograms. Experimental evidence showcases that a significance-based memory protection approach leads to a small degradation in the output quality with respect to an exact implementation, while resulting in substantial energy gains, both in the memory and the processing subsystem.
Resumo:
The conversion of biomass for the production of liquid fuels can help reduce the greenhouse gas (GHG) emissions that are predominantly generated by the combustion of fossil fuels. Oxymethylene ethers (OMEs) are a series of liquid fuel additives that can be obtained from syngas, which is produced from the gasification of biomass. The blending of OMEs in conventional diesel fuel can reduce soot formation during combustion in a diesel engine. In this research, a process for the production of OMEs from woody biomass has been simulated. The process consists of several unit operations including biomass gasifi- cation, syngas cleanup, methanol production, and conversion of methanol to OMEs. The methodology involved the development of process models, the identification of the key process parameters affecting OME production based on the process model, and the development of an optimal process design for high OME yields. It was found that up to 9.02 tonnes day1 of OME3, OME4, and OME5 (which are suitable as diesel additives) can be produced from 277.3 tonnes day1 of wet woody biomass. Furthermore, an optimal combination of the parameters, which was generated from the developed model, can greatly enhance OME production and thermodynamic efficiency. This model can further be used in a techno- economic assessment of the whole biomass conversion chain to produce OMEs. The results of this study can be helpful for petroleum-based fuel producers and policy makers in determining the most attractive pathways of converting bio-resources into liquid fuels.
Resumo:
Biogas from anaerobic digestion of sewage sludge is a renewable resource with high energy content, which is formed mainly of CH4 (40-75 vol.%) and CO2 (15-60 vol.%) Other components such as water (H2O, 5-10 vol.%) and trace amounts of hydrogen sulfide and siloxanes can also be present. A CH4-rich stream can be produced by removing the CO2 and other impurities so that the upgraded bio-methane can be injected into the natural gas grid or used as a vehicle fuel. The main objective of this paper is to develop a new modeling methodology to assess the technical and economic performance of biogas upgrading processes using ionic liquids which physically absorb CO2. Three different ionic liquids, namely the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-hexyl-3-methylimidazoliumbis[(trifluoromethyl)sulfonyl]imide and trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]imide, are considered for CO2 capture in a pressure-swing regenerative absorption process. The simulation software Aspen Plus and Aspen Process Economic Analyzer is used to account for mass and energy balances as well as equipment cost. In all cases, the biogas upgrading plant consists of a multistage compressor for biogas compression, a packed absorption column for CO2 absorption, a flash evaporator for solvent regeneration, a centrifugal pump for solvent recirculation, a pre-absorber solvent cooler and a gas turbine for electricity recovery. The evaluated processes are compared in terms of energy efficiency, capital investment and bio-methane production costs. The overall plant efficiency ranges from 71-86 % whereas the bio-methane production cost ranges from £6.26-7.76 per GJ (LHV). A sensitivity analysis is also performed to determine how several technical and economic parameters affect the bio-methane production costs. The results of this study show that the simulation methodology developed can predict plant efficiencies and production costs of large scale CO2 capture processes using ionic liquids without having to rely on gas solubility experimental data.