170 resultados para bat algorithm
Resumo:
Eleven polymorphic microsatellite marker loci were developed from a Leisler's bat (Nyctalus leisleri) genomic enriched library. Assessment of the usefulness of these markers for population genetics studies of Leisler's bats was carried out by screening 100 specimens sampled from eight locations in Ireland and two in Northeastern France. Both moderately and highly polymorphic marker loci were identified. Five to 28 alleles were found to be segregating per locus with observed heterozygosities values ranging from 28.4 to 94%. Initial evaluation indicates that these microsatellites will be useful for genetic based studies aiming, for instance, at parentage and population structure of Leisler's bats.
Resumo:
A novel most significant digit first CORDIC architecture is presented that is suitable for the VLSI design of systolic array processor cells for performing QR decomposition. This is based on an on-line CORDIC algorithm with a constant scale factor and a latency independent of the wordlength. This has been derived through the extension of previously published CORDIC algorithms. It is shown that simplifying the calculation of convergence bounds also greatly simplifies the derivation of suitable VLSI architectures. Design studies, based on a 0.35-µ CMOS standard cell process, indicate that 20 such QR processor cells operating at rates suitable for radar beamfoming can be readily accommodated on a single chip.
Resumo:
Here, the Jacobi iterative algorithm is applied to combat intersymbol interference (ISI) caused by frequency-selective channels. The performance bound of the equaliser is analysed in order to gain an insight into its asymptotic behaviour. Because of the error propagation problem, the potential of this algorithm is not reached in an uncoded system. However, its extension to a coded system with the application of the turbo-processing principle results in a new turbo equalisation algorithm, which demonstrates comparable performance with reduced complexity compared with some existing filter-based turbo equalisation schemes; and superior performance compared with some frequency domain solutions, such as orthogonal frequency division multiplexing and single-carrier frequency domain equalisation.
Resumo:
Image segmentation plays an important role in the analysis of retinal images as the extraction of the optic disk provides important cues for accurate diagnosis of various retinopathic diseases. In recent years, gradient vector flow (GVF) based algorithms have been used successfully to successfully segment a variety of medical imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods can lead to less accurate segmentation results in certain cases. In this paper, we propose the use of a new mean shift-based GVF segmentation algorithm that drives the internal/external energies towards the correct direction. The proposed method incorporates a mean shift operation within the standard GVF cost function to arrive at a more accurate segmentation. Experimental results on a large dataset of retinal images demonstrate that the presented method optimally detects the border of the optic disc.
Resumo:
For some time there is a large interest in variable step-size methods for adaptive filtering. Recently, a few stochastic gradient algorithms have been proposed, which are based on cost functions that have exponential dependence on the chosen error. However, we have experienced that the cost function based on exponential of the squared error does not always satisfactorily converge. In this paper we modify this cost function in order to improve the convergence of exponentiated cost function and the novel ECVSS (exponentiated convex variable step-size) stochastic gradient algorithm is obtained. The proposed technique has attractive properties in both stationary and abrupt-change situations. (C) 2010 Elsevier B.V. All rights reserved.