432 resultados para atomic and nuclear physics
Resumo:
Absolute cross sections for single and double detachment from H– following electron impact have been measured over a range of collision energies from the thresholds to 170 eV. The measurements were made using a magnetic storage ring. The ions in the ring were merged with a monoenergetic electron beam and neutral and positively charged fragments were detected. We cover larger energy ranges than in many of the previous experiments, and this is the first time both single and double detachment have been measured simultaneously. This allows us to present accurate ratios between the single and double detachment cross sections. On the basis of these ratio measurements we discuss possible mechanisms leading to double detachment.
Resumo:
In recent years there have been many studies of multiple ionization of closed shell rare gas atoms by intense laser fields. Until now no similar work has been done in the study of more diverse targets such as negative ions where low binding energies and strong electron correlations could yield distinctive behaviour. We present the first results of ionization of more than one electron from a range of atomic negative ions by intense laser pulses. Although these pulses are long by modern standards, and tend to produce sequential ionization in atoms, the positive ion yields from the negative ions do not depend predictably on the ionization potentials. This suggests that there may, intriguingly, be an alternative mechanism enhancing double ionization at low intensities.
Resumo:
Background: Mitochondria are vital to sperm as their motility powerhouses. They are also the only animal organelles with their own unique genome; encoding subunits for the complexes required for the electron transfer chain. Methods: A modified long PCR technique was used to study mitochondrial DNA (mtDNA) in ejaculated and testicular sperm samples from fertile men (n=11) and testicular sperm from men with obstructive azoospermia (n=25). Nuclear DNA fragmentation was measured by an alkaline single cell gel electrophoresis (COMET) assay. Results: Wild-type mtDNA was detected in only 60% of fertile mens�??�?�¢?? testicular sperm, 50% of their ejaculated sperm and 46% of testicular sperm from men with obstructive azoospermia. The incidence of mitochondrial deletions in testicular sperm of fertile and infertile men was not significantly different but the mean size of the deletions was significantly less in testicular sperm from fertile men compared with men with obstructive azoospermia (p<0.02). Nuclear DNA fragmentation in testicular sperm from fertile men and men with obstructive azoospermia was not significantly different. Conclusion: Multiple mtDNA deletions are common in testicular and ejaculated sperm from both fertile and infertile men. However, in males with obstructive azoospermia the mtDNA deletions in testicular sperm are of a larger scale.
Resumo:
A full-electron coupled-state treatment of positronium (Ps)- inert gas scattering is developed within the context of the frozen target approximation. Calculations are performed for Ps(Is) scattering by Ne and Ar in the impact energy range 0-40 eV using coupled pseudostate expansions consisting of nine and 22 Ps states. The purpose of the pseudostates is primarily to represent ionization of the Ps which is found to be a major process at the higher energies. First Born estimates of target excitation are used to complement the frozen target results. The available experimental data are discussed in detail. It is pointed out that the very low energy measurements (less than or equal to2 eV) correspond to the momentum transfer cross section sigma(mom) and not to the elastic cross section sigma(el). Calculation shows that sigma(mom), and sigma(el) diverge very rapidly with increasing energy and consequently comparisons of the low-energy data with ITel can be very misleading. Agreement between the calculations and the low-energy measurements of anion as well;as higher energy (greater than or equal to15 eV) beam measurements of the total cross section, is less than satisfactory. Results for Ps(1s) scattering by Kr and Xe in the static-exchange approximation are also presented.
Resumo:
Calculations are reported for positronium (Ps) scattering by atomic hydrogen (H) in the energy range 0-6.5 eV in a coupled- pseudostate approximation in which excitation and ionization channels of both the Ps and the H are taken into account. The approximation contains an accurate representation of the van der Waals coefficient. Results are presented for phase shifts, scattering lengths, effective ranges, and various cross sections including partial wave, total, and ortho-para conversion cross sections. An analysis of the possible spin transitions is provided and the energy of the positronium hydride (PsH) bound state is determined. Substantial differences are found from earlier work within the frozen target approximation, now clearly confirming the importance of target excitation channels. Good agreement is obtained with recent calculations of S-wave phase shifts and scattering lengths using the stabilization method. Convergence to the exact binding energy for PsH appears to be slow. Resonances corresponding to unstable states of the positron orbiting H- are seen in the electronic spin singlet partial waves. The importance of the H- formation channel is discussed.
Resumo:
We have performed a kinematically complete experiment and calculations on single ionization in 100 MeV/amu C6+ + He collisions. For electrons ejected into the scattering plane (defined by the initial and final projectile momentum vectors) our first- and higher-order calculations are in good agreement with the data. In the plane perpendicular to the scattering plane and containing the initial projectile axis a strong forward-backward asymmetry is observed. In this plane both the first-order and the higher-order calculations do not provide good agreement neither with the data nor amongst each other.
Resumo:
The effect of differing the datasets used in the modelling of the Ni-like Gd x-ray laser (XRL) is examined through the 1.50 hydro-atomic code, EHYBRID. Two atomic datasets, including energy levels and radiative and collisional excitation rates, are used as input data for the code. It is found that the behaviour of the XRL is somewhat different than might be expected from superficial examination of the atomic data. The similarities in the gain profiles at low densities are found to have encouraging implications. in our attempts to model XRLs.
Resumo:
We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.
Resumo:
Joint quantum measurements of noncommuting observables are possible, if one accepts an increase in the measured variances. A necessary condition for a joint measurement to be possible is that a joint probability distribution exists for the measurement. This fact suggests that there may be a link with Bell inequalities, as these will be satisfied if and only if a joint probability distribution for all involved observables exists. We investigate the connections between Bell inequalities and conditions for joint quantum measurements to be possible. Mermin's inequality for the three-particle Greenberger-Horne-Zeilinger state turns out to be equivalent to the condition for a joint measurement on two out of the three quantum systems to exist. Gisin's Bell inequality for three coplanar measurement directions, meanwhile, is shown to be less strict than the condition for the corresponding joint measurement.