59 resultados para anti-giardial activity
Resumo:
Background: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial oxidative stress and hypertrophic remodeling. Up-regulation of the cardiomyocyte adrenomedullin (AM) / intermedin (IMD) receptor signaling cascade is also apparent in NO-deficient cardiomyocytes: augmented expression of AM and receptor activity modifying proteins RAMP2 and RAMP3 is prevented by blood pressure normalization while that of RAMP1 and intermedin (IMD) is not, indicating that the latter is regulated by a pressure-independent mechanism. Aims: to verify the ability of an anti-oxidant intervention to normalize cardiomyocyte oxidant status and to investigate the influence of such an intervention on expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes. Methods: NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 35mg/kg/day) was given to rats for 8 weeks, with/without con-current administration of antioxidants (Vitamin C (25mg/kg/day) and Tempol (25mg/kg/day)). Results: In left ventricular cardiomyocytes isolated from L-NAME treated rats, increased oxidative stress was indicated by augmented (3.6 fold) membrane protein oxidation, enhanced expression of catalytic and regulatory subunits of pro-oxidant NADPH oxidases (NOX1, NOX2) and compensatory increases in expression of anti-oxidant glutathione peroxidase and Cu/Zn superoxide dismutases (SOD1, SOD3). Vitamin C plus Tempol did not reduce systolic blood pressure but normalized augmented plasma levels of IMD, but not of AM, and in cardiomyocytes: (i) abolished increased membrane protein oxidation; (ii) normalized augmented expression of prepro-IMD and RAMP1, but not prepro-AM, RAMP2 and RAMP3; (iii) attenuated (by 42%) increased width and normalized expression of hypertrophic markers, skeletal-�-actin and prepro-endothelin-1 similarly to blood pressure normalization but in contrast to blood pressure normalization did not attenuate augmented brain natriuretic peptide (BNP) expression. Conclusion: normalization specifically of augmented IMD/RAMP1 expression in NO-deficient cardiomyocytes by antioxidant intervention in the absence of blood pressure reduction indicates that these genes are likely to be induced directly by myocardial oxidative stress. Although oxidative stress contributed to cardiomyocyte hypertrophy, induction of IMD and RAMP1 is unlikely to be secondary to cardiomyocyte hypertrophy.
Resumo:
The role played by firms in the prosecution of anti-dumping and countervailing duty cases in the United States is understudied. This article provides greater understanding of the challenges faced by firms during the process of prosecuting anti-dumping and countervailing duty cases in the United States. This is achieved by applying a theoretical model of corporate political activity to data collected through interviews with 24 trade attorneys in Washington, D.C., practising in the area of antidumping and countervailing duty law. Anti-dumping and countervailing duty cases are found to require significant resource commitments from firms in the participating industries, as well as requiring individual firms to make a number of strategic decisions. The value of an affirmative decision and imposition of duties to the domestic and foreign industry is found to be more nuanced than previous studies have suggested. Non-duty effects of AD and CVD cases are also confirmed. Finally a clearer understanding of the role of individual firms in anti-dumping and countervailing duty cases is shown to have the potential to improve how industry influence is taken account of in future research.
Resumo:
Background: A number of cellular proteins, including P-glycoprotein (P-gp) and Multiple drug Resistance Protein (MRP-1), act as drug efflux pumps and are important in the resistance of many cancers to chemotherapy. We previously reported that a small number of NSAIDs could inhibit the activity of MRP-1. Materials and Methods: We chose sulindac as a candidate agent for further investigation as it has the most favourable efficacy and toxicity profile of the agents available for a potential specific MRP-1 inhibitor. NCI H460 cells expressed MRP-1 protein (by Western blot) and also the toxicity, of doxorubicin (a substrate of MRP-1) could be potentiated in this line using non-toxic concentrations of the MRP-1 substrate/inhibitor sulindac. These cells were implanted in nude mice and the animals divided into various groups which were administered doxorubicin and/or sulindac. Results: Sulindac was shown to significantly potentiate the tumour growth inhibitor activity of doxorubicin in this MRP-1-overexpressing human tumour xenograft model. Conclusion: Sulindac may be clinically useful as an inhibitor of the MRP-1 cancer resistance mechanism.
Resumo:
Many neuropeptides are similar in size, amino acid composition and charge to antimicrobial peptides. This study aimed to determine whether the neuropeptides substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), displayed antimicrobial activity against Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. SP, NPY, VIP and CGRP displayed variable degrees of antimicrobial activity against all the pathogens tested with the exception of S. aureus. These antimicrobial activities add a further dimension to the immunomodulatory roles for neuropeptides in the inflammatory and immune responses. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
α1-antitrypsin (α1-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of α1-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z α1-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved.
Control, M variant α1-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-κB activation and induced expression of a selection of pro- and anti-apoptotic genes.
Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-κB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-κB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies.
The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.
Resumo:
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization. The Journal of Immunology, 2011, 186: 3164-3172.
Resumo:
Behavioral effects of a novel anti-inflammatory SEN1176 were investigated. This pyrrolo[3,2-e][1,2,4]triazolo[1,5-a]pyrimidine suppresses amyloid-ß (Aß)1-42-induced macrophage production of nitric oxide, TNF-a, IL-1ß, and IL-6 in a dose-dependent fashion, an activity profile consistent with SEN1176 being a neuroinflammation inhibitor. Using male Sprague-Dawley rats, SEN1176 was examined relative to detrimental behavioral effects induced following bilateral intrahippocampal (IH) injections of aggregated Aß1-42. The rats were trained to respond under an alternating-lever cyclic-ratio (ALCR) schedule of food reinforcement, enabling measurement of parameters of operant performance that reflect aspects of learning and memory. Under the ALCR schedule, orally administered SEN1176 at 5, 20, or 30 mg/kg was effective in reducing the behavioral deficit caused by bilateral IH aggregated Aß1-42 injections in a dose-related manner over a 90-day treatment period. SEN1176 at 20 and 30 mg/kg significantly reduced lever switching errors and, at doses of 5, 10, and 30 mg/kg, significantly reduced incorrect lever perseverations, indicating a reduction of the behavioral deficit induced as a result of inflammation following IH Aß1-42 injections. When treatment with SEN1176 was instigated 30 days after IH Aß1-42 injections, it resulted in progressive protection, and withdrawal of SEN1176 treatment 60 days after IH Aß1-42 injections revealed partial retention of the protective effect. SEN1176 also significantly reduced numbers of activated astrocytes adjacent to the aggregated Aß1-42 injection sites. These results indicate the potential of SEN1176 for alleviating chronic neuroinflammatory processes related to brain Aß deposition that affect learning and memory in Alzheimer's disease.
Resumo:
Background
Neutrophil elastase (NE)-mediated inflammation contributes to lung damage in cystic fibrosis (CF). We investigated if DX-890, a small-protein NE inhibitor, could reduce neutrophil trans-epithelial migration and reduce activity released from neutrophils and NE-induced cytokine expression in airway epithelial cells.
Methods
Activated blood neutrophils (CF and healthy) treated ± DX-890 were assayed for NE activity. Transmigration of calcein-labeled neutrophils was studied using a 16HBE14o- epithelial monolayer. IL-8 release from primary nasal epithelial monolayers (CF and healthy) was measured after treatment ± DX-890 and NE or CF sputum.
Results
DX-890 reduced NE activity from neutrophils (CF and healthy) and reduced neutrophil transmigration. DX-890 pre-treatment reduced IL-8 release from epithelial cells of healthy or CF subjects after stimulation with NE and CF sputum sol. All improvements with DX-890 were statistically significant (p < 0.05).
Conclusions
DX-890 reduces NE-mediated transmigration and inflammation. NE inhibition could be useful in managing neutrophilic airway inflammation in CF.
Resumo:
Mitochondria produce cellular energy but also free-radicals, which damage cells despite an array of endogenous anti-oxidants. In Northern Europe, the mitochondrial haplogroup J has been related to longevity in nonagenarians and centenarians but also with age-related disease. Hypertension is an important contributor to atherosclerotic-related diseases and its pathogenesis is associated with increased oxidative stress. In this study, we questioned whether J haplogroup octo/nonagenarians from the Belfast Elderly Longitudinal Free-living Elderly STudy (BELFAST) study showed evidence of protective blood pressure or anti-oxidant profile which might explain their longevity advantage. Briefly, in a cross-sectional study, community-living, mentally alert (Folstein >25/30), octo/nonagenarian subjects, recruited for good health, were enlisted and consented as part of the BELFAST study, for blood pressure, anthropometric measurements and blood sampling. DNA typing for mitochondrial haplotypes was carried out with measurements for enzymatic and non-enzymatic antioxidants. J haplogroup carriers showed lower systolic blood pressure and glutathione peroxidase activity (Gpx) with higher folate measurements. There was no change in urate, bilirubin, albumin or nutrition-related antioxidants-selenium or vitamins A, C and a and ß carotene. BELFAST study mtDNA J haplogroup octo/nonagenarians showed lower blood pressure and reduced glutathione peroxidase activity and higher folate, but no change for other antioxidants. These findings are of interest in view of mtDNA J haplogroup's association with increased age in some previous studies.
Resumo:
Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.
Resumo:
Epithelia play important immunological roles at a variety of mucosal sites. We examined NFkappaB activity in control and TNF-alpha treated bovine mammary epithelial monolayers (BME-UV cells). A region of the bovine IL-8 (bIL-8) promoter was sequenced and a putative kappaB consensus sequence was identified bioinformatically. We used this sequence to analyse nuclear extracts for IL-8 specific NFkappaB activity. As a surrogate marker of NFkappaB activation, we investigated IL-8 release in two models. Firstly in BME-UV monolayers, IL-8 release in the presence of pro- and anti-inflammatory agents was determined by enzyme-linked immunosorbent assay (ELISA). Secondly, we measured IL-8 secretion from a novel model of intact mucosal sheets of bovine teat sinus. IL-8 release into bathing solutions was assessed following treatment with pro- and anti-inflammatory agents. TNF-alpha enhanced NFkappaB activity in bovine mammary epithelial monolayers. p65 NFkappaB homodimer was identified in both control and TNF-alpha treated cells. Novel sequencing of the bovine IL-8 promoter identified a putative kappaB consensus sequence, which specifically bound TNF-alpha inducible p50/p65 heterodimer. TNF-alpha induced primarily serosal IL-8 release in the cell culture model. Pre-treatment with anti-TNF or dexamethasone inhibited TNF-alpha induced IL-8 release. High dose interleukin-1beta (IL-1beta) induced IL-8 release, however significantly less potently than TNF-alpha. Bovine mammary mucosal tissue released high basal levels of IL-8 which were unaffected by TNF-alpha or IL-1beta but inhibited by both dexamethasone and anti-TNF. These data support a role for TNF-alpha in activation of NFkappaB and release of IL-8 from bovine mammary epithelial cells.
Resumo:
Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.
Resumo:
Scholars have devoted much attention to the causes and consequences of Presbyterian emigration from Ulster to the thirteen colonies before 1776. This article moves beyond the eighteenth century to examine the continued religious links between Presbyterians in Ireland and the United States in the nineteenth century. It begins with an examination of the influence of evangelicalism on both sides of the Atlantic and how this promoted unity in denominational identity, missionary activity to convert Catholics, and revivalist religion during the first half of the century. Though Irish Presbyterians had great affection for their American co-religionists, they were not uncritical, and significant tensions did develop over slavery. The article then examines the religious character of Scotch-Irish or Ulster-Scots identity in the late nineteenth century, which was articulated in response to the alleged demoralising influence of large-scale Irish immigration during and after the Famine of the 1840s, the so-called Romanisation of Catholicism, and the threat of Home Rule in Ireland. The importance of identity politics should not obscure religious developments, and the article ends with a consideration of the origins and character of fundamentalism, perhaps one of the most important cultural connections between Protestants in Northern Ireland and the United States in the twentieth century.
Resumo:
UNLABELLED: Influenza A viruses counteract the cellular innate immune response at several steps, including blocking RIG I-dependent activation of interferon (IFN) transcription, interferon (IFN)-dependent upregulation of IFN-stimulated genes (ISGs), and the activity of various ISG products; the multifunctional NS1 protein is responsible for most of these activities. To determine the importance of other viral genes in the interplay between the virus and the host IFN response, we characterized populations and selected mutants of wild-type viruses selected by passage through non-IFN-responsive cells. We reasoned that, by allowing replication to occur in the absence of the selection pressure exerted by IFN, the virus could mutate at positions that would normally be restricted and could thus find new optimal sequence solutions. Deep sequencing of selected virus populations and individual virus mutants indicated that nonsynonymous mutations occurred at many phylogenetically conserved positions in nearly all virus genes. Most individual mutants selected for further characterization induced IFN and ISGs and were unable to counteract the effects of exogenous IFN, yet only one contained a mutation in NS1. The relevance of these mutations for the virus phenotype was verified by reverse genetics. Of note, several virus mutants expressing intact NS1 proteins exhibited alterations in the M1/M2 proteins and accumulated large amounts of deleted genomic RNAs but nonetheless replicated to high titers. This suggests that the overproduction of IFN inducers by these viruses can override NS1-mediated IFN modulation. Altogether, the results suggest that influenza viruses replicating in IFN-competent cells have tuned their complete genomes to evade the cellular innate immune system and that serial replication in non-IFN-responsive cells allows the virus to relax from these constraints and find a new genome consensus within its sequence space.
IMPORTANCE: In natural virus infections, the production of interferons leads to an antiviral state in cells that effectively limits virus replication. The interferon response places considerable selection pressure on viruses, and they have evolved a variety of ways to evade it. Although the influenza virus NS1 protein is a powerful interferon antagonist, the contributions of other viral genes to interferon evasion have not been well characterized. Here, we examined the effects of alleviating the selection pressure exerted by interferon by serially passaging influenza viruses in cells unable to respond to interferon. Viruses that grew to high titers had mutations at many normally conserved positions in nearly all genes and were not restricted to the NS1 gene. Our results demonstrate that influenza viruses have fine-tuned their entire genomes to evade the interferon response, and by removing interferon-mediated constraints, viruses can mutate at genome positions normally restricted by the interferon response.