63 resultados para aluminum tube


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-energy electron diffraction, X-ray photoelectron spectroscopy, high-resolution electron energy-loss spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction spectrometry results are reported for the structural and reactive behavior of alumina films grown on Pt(111) as a function of thickness and oxidation temperature. Submonolayer Al films undergo compete oxidation at 300 K, annealing at 1100 K resulting in formation of somewhat distorted crystalline gamma-alumina, Thicker deposits require 800 K oxidation to produce Al2O3, and these too undergo crystallization at 800 K, yielding islands of apparently undistorted gamma-alumina on the Pt(111) surface. Oxidation of a p(2 x 2) Pt3Al surface alloy occurs only at>800 K, resulting in Al extraction, These alumina films on Pt(lll) markedly increase the coverage of adsorbed SO4 resulting from SO2 chemisorption onto oxygen-precovered surfaces. This results in enhanced propane uptake and subsequent reactivity relative to SO4/Pt(111). A bifunctional mechanism is proposed to account for our observations, and the relevance of these to an understanding of the corresponding dispersed systems is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 200 known diseases are transmitted via foods or food products. In the United States, food-borne diseases are responsible for 76 million cases of illness, 32,500 cases of hospitalisation and 5000 cases of death yearly. The ongoing increase in worldwide trade in livestock, food, and food products in combination with increase in human mobility (business- and leisure travel, emigration etc.) will increase the risk of emergence and spreading of such pathogens. There is therefore an urgent need for development of rapid, efficient and reliable methods for detection and identification of such pathogens.

Microchipfabrication has had a major impact on electronics and is expected to have an equally pronounced effect on life sciences. By combining micro-fluidics with micromechanics, micro-optics, and microelectronics, systems can be realized to perform complete chemical or biochemical analyses. These socalled ’Lab-on-a-Chip’ will completely change the face of laboratories in the future where smaller, fully automated devices will be able to perform assays faster, more accurately, and at a lower cost than equipment of today. A general introduction of food safety and applied micro-nanotechnology in life sciences will be given. In addition, examples of DNA micro arrays, micro fabricated integrated PCR chips and total integrated lab-on-achip systems from different National and EU research projects being carried out at the Laboratory of Applied Micro- Nanotechnology (LAMINATE) group at the National Veterinary Institute (DTU-Vet) Technical University of Denmark and the BioLabchip group at the Department of Micro and Nanotechnology (DTU-Nanotech), Technical University of Denmark (DTU), Ikerlan-IK4 (Spain) and other 16 partners from different European countries will be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement. Copyright © 2009 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction (EBSD) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. © 2009 Editorial Board of CHINA WELDING.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR was used to study the semiconductor photocatalytic (SPC) CC coupling of phenoxyacetic acid (PAA) with acrylamide (ACM) in an NMR tube photoreactor. Using an NMR tube with a sol-gel titania inner coating as a photoreactor, this reaction is relatively clean, forming only 1 product, 4-phenoxybutanamide (4-PB), in yields up to 78%. This SPC reaction is used to assess the activity of the sol-gel titania coating as a function of their annealing temperature, which alters the surface area and phase of the titania, and the general reusability of the TiO coated NMR tubes. The optimum temperature range for annealing the sol-gel titania films is between 450 °C and 800 °C, with the maximum yield and rate attained at 450 °C. Despite a decrease in the initial rates of formation of 4-PB above an annealing temperature of 450 °C, the final product yields remained similar, giving maximum yields within 60 min of irradiation. The reusability study reveals that the activity of the sol-gel titania can quickly deteriorate with repeated use due to the adsorption of yellow/brown coloured, insoluble, most likely organic polymeric, material and its screening effect on the underlying photocatalyst. The titania can, however, be restored to its original activity by a simple heat treatment at 450 °C for 30 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on experiments aimed at the generation and characterization of solid density plasmas at the free-electron laser FLASH in Hamburg. Aluminum samples were irradiated with XUV pulses at 13.5 nm wavelength (92 eV photon energy). The pulses with duration of a few tens of femtoseconds and pulse energy up to 100 mu J are focused to intensities ranging from 10(13) to 10(17) W/cm(2). We investigate the absorption and temporal evolution of the sample under irradiation by use of XUV spectroscopy. We discuss the origin of saturable absorption, radiative decay, bremsstrahlung and ionic line emission. Our experimental results are in good agreement with hydrodynamic simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian cancer is the most lethal gynecological malignancy, primarily because its origin and initiation factors are unknown. A secretory murine oviductal epithelial (MOE) model was generated to address the hypothesis that the fallopian tube is an origin for high-grade serous cancer. MOE cells were stably altered to express mutation in p53, silence PTEN, activate AKT, and amplify KRAS alone and in combination, to define if this cell type gives rise to tumors and what genetic alterations are required to drive malignancy. Cell lines were characterized in vitro and allografted into mice. Silencing PTEN formed high-grade carcinoma with wide spread tumor explants including metastasis into the ovary. Addition of p53 mutation to PTEN silencing did not enhance this phenotype, whereas addition of KRAS mutation reduced survival. Interestingly, PTEN silencing and KRAS mutation originating from ovarian surface epithelium generated endometrioid carcinoma, suggesting that different cellular origins with identical genetic manipulations can give rise to distinct cancer histotypes. Defining the roles of specific signaling modifications in tumorigenesis from the fallopian tube/oviduct is essential for early detection and development of targeted therapeutics. Further, syngeneic MOE allografts provide an ideal model for pre-clinical testing in an in vivo environment with an intact immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Ovarian cancer is the most lethal gynecological malignancy that affects women. Recent data suggests that the disease may originate in the fallopian fimbriae; however, the anatomical origin of ovarian carcinogenesis remains unclear. This is largely driven by our lack of knowledge regarding the structure and function of normal fimbriae and the relative paucity of models that accurately recapitulate the in vivo fallopian tube. Therefore, a human three-dimensional (3D) culture system was developed to examine the role of the fallopian fimbriae in serous tumorigenesis.

METHODS: Alginate matrix was utilized to support human fallopian fimbriae ex vivo. Fimbriae were cultured with factors hypothesized to contribute to carcinogenesis, namely; H2O2 (1mM) a mimetic of oxidative stress, insulin (5μg/ml) to stimulate glycolysis, and estradiol (E2, 10nM) which peaks before ovulation. Cultures were evaluated for changes in proliferation and p53 expression, criteria utilized to identify potential precursor lesions. Further, secretory factors were assessed after treatment with E2 to identify if steroid signaling induces a pro-tumorigenic microenvironment.

RESULTS: 3D fimbriae cultures maintained normal tissue architecture up to 7days, retaining both epithelial subtypes. Treatment of cultures with H2O2 or insulin significantly induced proliferation. However, p53 stabilization was unaffected by any particular treatment, although it was induced by ex vivo culturing. Moreover, E2-alone treatment significantly induced its canonical target PR and expression of IL8, a factor linked to poor outcome.

CONCLUSIONS: 3D alginate cultures of human fallopian fimbriae provide an important microphysiological model, which can be further utilized to investigate serous tumorigenesis originating from the fallopian tube.