59 resultados para aerospace industries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Modern business practices in engineering are increasingly turning to post manufacture service provision in an attempt to generate additional revenue streams and ensure commercial sustainability. Maintainability has always been a consideration during the design process but in the past it has been generally considered to be of tertiary importance behind manufacturability and primary product function in terms of design priorities. The need to draw whole life considerations into concurrent engineering (CE) practice has encouraged companies to address issues such as maintenance, earlier in the design process giving equal importance to all aspects of the product lifecycle. The consideration of design for maintainability (DFM) early in the design process has the potential to significantly reduce maintenance costs, and improve overall running efficiencies as well as safety levels. However a lack of simulation tools still hinders the adaptation of CE to include practical elements of design and therefore further research is required to develop methods by which ‘hands on’ activities such as maintenance can be fully assessed and optimised as concepts develop. Virtual Reality (VR) has the potential to address this issue but the application of these traditionally high cost systems can require complex infrastructure and their use has typically focused on aesthetic aspects of mature designs. This paper examines the application of cost effective VR technology to the rapid assessment of aircraft interior inspection during conceptual design. It focuses on the integration of VR hardware with a typical desktop engineering system and examines the challenges with data transfer, graphics quality and the development of practical user functions within the VR environment. Conclusions drawn to date indicate that the system has the potential to improve maintenance planning through the provision of a usable environment for inspection which is available as soon as preliminary structural models are generated as part of the conceptual design process. Challenges still exist in the efficient transfer of data between the CAD and VR environments as well as the quantification of any benefits that result from the proposed approach. The result of this research will help to improve product maintainability, reduce product development cycle times and lower maintenance costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proliferation of media services enabled by digital technologies poses a serious challenge to public service broadcasting rationales based on media scarcity. Looking to the past and future, we articulate an important role that the Australian Broadcasting Corporation (ABC) might play in the digital age. We argue that historically the ABC has acted beyond its institutional broadcasting remit to facilitate cultural development and, drawing on the example of Pool (an online community of creative practitioners established and maintained by the ABC), point to a key role it might play in fostering network innovation in what are now conceptualised as the creative industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies on work instruction delivery for complex assembly tasks have shown that the mode and delivery method for the instructions in an engineering context can influence both build time and product quality. The benefits of digital, animated instructional formats when compared to static pictures and text only formats have already been demonstrated. Although pictograms have found applications for relatively straight forward operations and activities, their applicability to relatively complex assembly tasks has yet to be demonstrated. This study compares animated instructions and pictograms for the assembly of an aircraft panel. Based around a series of build experiments, the work records build time as well as the number of media references to measure and compare build efficiency. The number of build errors and the time required to correct them is also recorded. The experiments included five participants completing five builds over five consecutive days for each media type. Results showed that on average the total build time was 13.1% lower for the group using animated instructions. The benefit of animated instructions on build time was most prominent in the first three builds, by build four this benefit had disappeared. There were a similar number of instructional references for the two groups over the five builds but the pictogram users required a lot more references during build 1. There were more errors among the group using pictograms requiring more time for corrections during the build.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the development of aerospace composite components, designing for reduced manufacturing layup cost and structural complexity is increasingly important. While the advantage of composite materials is the ability to tailor designs to various structural loads for minimum mass, the challenge is obtaining a design that is manufacturable and minimizes local ply incompatibility. The focus of the presented research is understanding how the relationships between mass, manufacturability and design complexity, under realistic loads and design requirements, can be affected by enforcing ply continuity in the design process. Presented are a series of sizing case studies on an upper wing cover, designed using conventional analyses and the tabular laminate design process. Introducing skin ply continuity constraints can generate skin designs with minimal ply discontinuities, fewer ply drops and larger ply areas than designs not constrained for continuity. However, the reduced design freedom associated with the addition of these constraints results in a weight penalty over the total wing cover. Perhaps more interestingly, when considering manual hand layup the reduced design complexity is not translated into a reduced recurring manufacturing cost. In contrast, heavier wing cover designs appear to take more time to layup regardless of the laminate design complexity. © 2012 AIAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critical decisions are made by decision-makers throughout
the life-cycle of large-scale projects. These decisions are crucial as they
have a direct impact upon the outcome and the success of projects. To aid
decision-makers in the decision making process we present an evidential
reasoning framework. This approach utilizes the Dezert-Smarandache
theory to fuse heterogeneous evidence sources that suffer from levels
of uncertainty, imprecision and conflicts to provide beliefs for decision
options. To analyze the impact of source reliability and priority upon
the decision making process, a reliability discounting technique and a
priority discounting technique, are applied. A maximal consistent subset
is constructed to aid in dening where discounting should be applied.
Application of the evidential reasoning framework is illustrated using a
case study based in the Aerospace domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability to numerically model the crushing behaviour of composite structures will enable the efficient design of structures with high specific energy absorption capacity. This is particularly relevant to the aerospace and automotive industries where cabin structures need to be shown to be crashworthy. In this paper, a three-dimensional damage model is presented, which accurately represents the behaviour of composite laminates under crush loading. Both intralaminar and interlaminar failure mechanisms are taken into account. The crush damage model was implemented in ABAQUS/Explicit as a VUMAT subroutine. Numerical predictions are shown to agree well with experimental results, accurately capturing the intralaminar and interlaminar damage for a range of stacking sequences, triggers and composite materials. The use of measured material parameters required by the numerical models, without the need to ‘calibrate’ this input data, demonstrates this computational tool's predictive capabilities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a large structural component and its supply chain. The component is representative of that used in the production of civil transport aircraft and is manufactured from carbon fibre epoxy resin prepreg, using traditional hand layup and autoclave cure. Life cycle assessment (LCA) is used to predict the component’s production carbon emissions. The results determine the distribution of carbon emissions within the supply chain, identifying the dominant production processes as carbon fibre manufacture and composite part manufacture. The elevated temperature processes of material and part creation, and the associated electricity usage, have a significant impact on the overall production emissions footprint. The paper also demonstrates the calculation of emissions footprint sensitivity to the geographic location and associated energy sources of the supply chain. The results verify that the proposed methodology is capable of quantitatively linking component and supply chain specifics to manufacturing processes and thus identifying the design drivers for carbon emissions in the manufacturing life of the component.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: