63 resultados para additive manufacture
Resumo:
We describe, for the first time, considerations in the sterile manufacture of polymeric microneedle arrays. Microneedles (MN) made from dissolving polymeric matrices and loaded with the model drugs ovalbumin (OVA) and ibuprofen sodium and hydrogel-forming MN composed of "super-swelling" polymers and their corresponding lyophilised wafer drug reservoirs loaded with OVA and ibuprofen sodium were prepared aseptically or sterilised using commonly employed sterilisation techniques. Moist and dry heat sterilisation, understandably, damaged all devices, leaving aseptic production and gamma sterilisation as the only viable options. No measureable bioburden was detected in any of the prepared devices, and endotoxin levels were always below the US Food & Drug Administration limits (20 endotoxin units/device). Hydrogel-forming MN were unaffected by gamma irradiation (25 kGy) in terms of their physical properties or capabilities in delivering OVA and ibuprofen sodium across excised neonatal porcine skin in vitro. However, OVA content in dissolving MN (down from approximately 101.1 % recovery to approximately 58.3 % recovery) and lyophilised wafer-type drug reservoirs (down from approximately 99.7 % recovery to approximately 60.1 % recovery) was significantly reduced by gamma irradiation, while the skin permeation profile of ibuprofen sodium from gamma-irradiated dissolving MN was markedly different from their non-irradiated counterparts. It is clear that MN poses a very low risk to human health when used appropriately, as evidenced here by low endotoxin levels and absence of microbial contamination. However, if guarantees of absolute sterility of MN products are ultimately required by regulatory authorities, it will be necessary to investigate the effect of lower gamma doses on dissolving MN loaded with active pharmaceutical ingredients and lyophilised wafers loaded with biomolecules in order to avoid the expense and inconvenience of aseptic processing.
Resumo:
This paper presents a new approach to speech enhancement from single-channel measurements involving both noise and channel distortion (i.e., convolutional noise), and demonstrates its applications for robust speech recognition and for improving noisy speech quality. The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise for speech estimation. Third, we present an iterative algorithm which updates the noise and channel estimates of the corpus data model. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement.
Resumo:
This paper presents a new approach to single-channel speech enhancement involving both noise and channel distortion (i.e., convolutional noise). The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise. Third, we present an iterative algorithm for improved speech estimates. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement. Index Terms: corpus-based speech model, longest matching segment, speech enhancement, speech recognition
Resumo:
A method of manufacturing a composite concrete article comprising forming a textile structure, removing material from regions of the textile structure to create voids in the textile structure and incorporating the textile structure into a body of wet uncured concrete such that the concrete flows into the voids created in the textile structure, embedding the textile structure into the concrete, whereby the textile structure defines at least a portion of a surface of the cured concrete article.
Resumo:
The impact of buckling containment features on the stability of thin-gauge fuselage, metallic stiffened panels has previously been demonstrated. With the continuing developments in manufacturing technology, such as welding, extrusion, machining, and additive layer manufacture, understanding the benefits of additional panel design features on heavier applications, such as wing panels, is timely. This compression testing of thick-gauge panels with and without buckling containment features has been undertaken to verify buckling and collapse behaviors and validate sizing methods. The experimental results demonstrated individual panel mass savings on the order of 9%, and wing cover design studies demonstrated mass savings on the order of 4 to 13%, dependent on aircraft size and material choice.
Resumo:
This paper describes the simulation of representative aircraft wing stiffened panels under axial compression loading, to determine the effects of varying the manufacturing shape and assembly joining methods on stiffened panel performance. T-stiffened and Z-stiffened panels are modelled in Abaqus simulating integral, co-cured and mechanically fastened joints. The panels are subject to an edge compressive displacement along the stiffener axis until failure and the ultimate failure load and buckling performance is assessed for each. Integral panels consistently offer the highest performance. Co-cured panels demonstrate reduced performance (3-5% reduction in ultimate load relative to integral) caused by localised cohesive failure and skin-stiffener separation. The mechanically fastened panels are consistently the weakest joint (19-25% reduction in ultimate load relative to integral) caused primarily by inter-rivet buckling between fasteners
Resumo:
Transdermal drug delivery offers a number of advantages for the patient, due not only its non-invasive and convenient nature, but also factors such as avoidance of first pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedle arrays can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below. Microneedles have been extensively investigated in recent decades for drug and vaccine delivery as well as minimally invasive patient monitoring/diagnosis. This review focuses on a range of critically important aspects of microneedle technology, namely their material composition, manufacturing techniques, methods of evaluation and commercial translation to the clinic for patient benefit and economic return. Microneedle research and development is finally now at the stage where commercialisation is a realistic possibility. However, progress is still required in the areas of scaled-up manufacture and regulatory approval.