48 resultados para Weathering of buildings
Resumo:
It is predicted that climate change will result in rising sea levels, more frequent and extreme weather events, hotter and drier summers and warmer and wetter winters. This will have a significant impact on the design of buildings, how they are kept cool and how they are weathered against more extreme climatic conditions. The residential sector is already a significant environmental burden with high associated operational energy. Climate change, and a growing population requiring residence, has the potential to exacerbate this problem seriously. New paradigms for residential building design are required to enable low-carbon dioxide operation to mitigate climate change. They must also face the reality of inevitable climate change and adopt climate change adaptation strategies to cope with future scenarios. However, any climate adaptation strategy for dwellings must also be cognisant of adapting occupant needs, influenced by ageing populations and new technologies. This paper presents concepts and priorities for changing how society designs residential buildings by designing for adaptation. A case study home is analysed in the context of its stated aims of low energy and adaptability. A post-occupancy evaluation of the house is presented, and future-proofing strategies are evaluated using climate projection data for future climate change scenarios.
Resumo:
Sociologists of health and illness have tended to overlook the architecture and buildings used in health care. This contrasts with medical geographers who have yielded a body of work on the significance of places and spaces in the experience of health and illness. A review of sociological studies of the role of the built environment in the performance of medical practice uncovers an important vein of work, worthy of further study. Through the historically situated example of hospital architecture, this article seeks to tease out substantive and methodological issues that can inform a distinctive sociology of healthcare architecture. Contemporary healthcare buildings manifest design models developed for hotels, shopping malls and homes. These design features are congruent with neoliberal forms of subjectivity in which patients are constituted as consumers and responsibilised citizens. We conclude that an adequate sociology of healthcare architecture necessitates an appreciation of both the construction and experience of buildings, exploring the briefs and plans of their designers, and observing their everyday uses. Combining approaches and methods from the sociology of health and illness and science and technology studies offers potential for a novel research agenda that takes healthcare buildings as its substantive focus.
Resumo:
Following automation of lighthouses around the coastline of Ireland, reports of accelerated deterioration of interior granite stonework have increased significantly with an associated deterioration in the historic structure and rise in related maintenance costs. Decay of granite stone- work primarily occurs through granular disintegration with the effective grusification of granite surfaces. A decay gradient exists within the towers whereby the condition of granite in the lower levels is much worse than elsewhere. The lower tower levels are also regions with highest rela- tive humidity values and greatest salt concentrations. Data indicate that post-automation decay may have been trig- gered by a change in micro-environmental conditions within the towers associated with increased episodes of condensation on stone surfaces. This in turn appears to have facilitated deposition and accumulation of hygro- scopic salts (e.g. NaCl) giving rise to widespread evidence of deliquescence in the lower tower levels. Evidence indicates that the main factors contributing to accelerated deterioration of interior granite stonework are changes in micro-environmental conditions, salt weathering, chemical weathering through the corrosive effect of strongly alkaline conditions on alumino-silicate minerals within the granite and finally, the mica-rich characteristics of the granite itself which increases its structural and chemical susceptibility to subaerial weathering processes by creating points of weakness within the granite. This case study demonstrates how seemingly minor changes in micro-environmental conditions can unintentionally trigger the rapid and extensive deterioration of a previously stable rock type and threaten the long-term future of nationally iconic opera- tional historic structures.