108 resultados para Water barrier properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water, one of the most popular species in our planet, can play a catalytic role in many reactions, including reactions in heterogeneous catalysis. In a recent experimental work, Bergeld, Kasemo, and Chakarov demonstrated that water is able to promote CO oxidation under low temperatures (similar to200 K). In this study, we choose CO oxidation on Pt(111) in the presence of water as a model system to address the catalytic role of water for surface reactions in general using density functional theory. Many elementary steps possibly involved in the CO oxidation on Pt(111) at low temperatures have been investigated. We find the following. First, in the presence of water, the CO oxidation barrier is reduced to 0.33 eV (without water the barrier is 0.80 eV). This barrier reduction is mainly due to the H-bonding between the H in the H2O and the O at the transition state (TS), which stabilizes the TS. Second, CO can readily react with OH with a barrier of 0.44 eV, while COOH dissociation to produce CO2 is not easy (the barrier is 1.02 eV). Third, in the H2O+OH mixed phase, CO can be easily converted into CO2. It occurs through two steps: CO reacts with OH, forming COOH; and COOH transfers the H to a nearby H2O and, at the same time, an H in the H2O transfers to a OH, leading to CO2 formation. The reaction barrier of this process is 0.60 eV under CO coverage of 1/6 ML and 0.33 eV under CO coverage of 1/3 ML. The mechanism of CO oxidation at low temperatures is discussed. On the basis of our calculations, we propose that the water promotion effect can in general be divided into two classes: (i) By H-bonding between the H of H2O and an electron negative species such as the O in the reaction of CO+O+H2O-->CO2+H2O, H2O can stabilize the TS of the reaction and hence reduce the barrier. (ii) H2O first dissociates into H and OH and then OH or H participates directly in the reaction to induce new reaction mechanism with more favorable routes, in which OH or H can act as an intermediate. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional theory has been used to study the adsorption of hydroxyl at low and high coverages and also to investigate the nature of the intermediate in the H2O formation reaction on Pt(111). At low coverages [1/9 of a monolayer (ML) to 1/3 ML] OH binds preferentially at bridge and top sites with a chemisorption energy of similar to2.25 eV. At high coverages (1/2 ML to 1 ML) H bonding between adjacent hydroxyls causes: (i) an enhancement in OH chemisorption energy by about 15%; (ii) a strong preference for OH adsorption at top sites; and (iii) the formation of OH networks. The activation energy for the diffusion of isolated OH groups along close packed rows of Pt atoms is 0.1 eV. This low barrier coupled with H bonding between neighboring OH groups indicates that hydroxyls are susceptible to island formation at low coverages. Pure OH as well as coadsorbed OH and H can be ruled out as the observed low temperature intermediate in the water formation reaction. Instead we suggest that the intermediate consists of a mixed OH+H2O overlayer with a macroscopic surface coverage of 3/4 ML in a 2:1 ratio of OH and H2O. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([CCIm][BF]) and 1-ethyl-3-methylimidazolium ethylsulfate ([CCIm][EtSO])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium hexafluorophosphate ([CCIm][PF]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CCPyrro][NTf]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N][NTf])) were chosen. Small excess volumes (less than 0.5 cm · mol at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[CCIm][EtSO] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of water content on room-temperature ionic liquids (RTILs) was studied by Karl Fischer titration and cyclic voltammetry in the following ionic liquids: tris(P-hexyl)tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P-14,P-6,P-6,P-6][NTf2], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [C(4)mpyrr][NTf2], 1-hexyl-3-methylimidazolium tris(perfluoroethyl)trifluorophosphate [C(6)mim][FAP], 1-butyl3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)mim][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)dmim][NTf2], N-hexyltriethylammonium bis(trifluoromethylsolfonyl)imide [N-6,N-2,N-2,N-2][NTf2], 1-butyl-3-methylirnidazolium hexafluorophosphate [C(4)mim][PF6], F6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(2)mim][NTf2], 1-butyl-3-methylimidazolium tetrafluoroborate [C(4)mim][BF4], 1-hexyl-3-methylimidazolium iodide [C(4)mim][I], 1-butyl-3-methylimidazolium trifluoromethylsulfonate [C(4)mim][OTf], and 1-hexyl-3-methylimidazolium chloride [C(6)mim][Cl]. In addition, electrochemically relevant properties such as viscosity, conductivity, density, and melting point of RTILs are summarized from previous literature and are discussed. Karl Fisher titrations were carried out to determine the water content of RTILs for vacuum-dried, atmospheric, and wet samples. The anion in particular was found to affect the level of water uptake. The hydrophobicity of the anions adhered to the following trend: [FAP](-) > [NTf2](-) > [PF6](-) > [BF4](-) > halides. Cyclic voltammetry shows that an increase in water content significantly narrows the electrochemical window of each ionic liquid. The electrochemical window decreases in the following order: vacuum-dried > atmospheric > wet at 298 K > 318 K > 338 K. The anodic and cathodic potentials vs ferrocene internal reference are also listed under vacuum-dried and atmospheric conditions. The data obtained may aid the selection of a RTIL for use as a solvent in electrochemical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-consolidating concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work conditions and also reduce the impact on the environment by elimination of the need for compaction. This investigation aimed at exploring the potential use of the neurofuzzy (NF) approach to model the fresh and hardened properties of SCC containing pulverised fuel ash (PFA) as based on experimental data investigated in this paper. Twenty six mixes were made with water-to-binder ratio ranging from 0.38 to 0.72, cement content ranging from 183 to 317 kg/m3 , dosage of PFA ranging from 29 to 261 kg/m3 , and percentage of superplasticizer, by mass of powder, ranging from 0 to 1%. Nine properties of SCC mixes modeled by NF were the slump flow, JRing combined to the Orimet, JRing combined to cone, V-funnel, L-box blocking ratio, segregation ratio, and the compressive strength at 7, 28, and 90 days. These properties characterized the filling ability, the passing ability, the segregation resistance of fresh SCC, and the compressive strength. NF model is constructed by training and testing data using the experimental results obtained in this study. The results of NF models were compared with experimental results and were found to be quite accurate. The proposed NF models offers useful modeling approach of the fresh and hardened properties of SCC containing PFA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:


The permeability of concrete is influenced by the porosity and the interconnectivity of the pores in the cement paste and the microcracks in concrete, especially in the interface of paste-aggregate. The movements of gases, liquids, and ions through concrete is important because of their interactions with concrete constituents, including pore water, which can alter the integrity of concrete directly and indirectly, leading to the deterioration of structures. This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscositymodifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP, have lower permeability properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher watercement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing need to identify the effect of mix composition on the rheological properties of composite cement pastes using simple tests to determine the fluidity, the cohesion and other mechanical properties of grouting applications such as compressive strength. This paper reviews statistical models developed using a fractional factorial design which was carried out to model the influence of key parameters on properties affecting the performance of composite cement paste. Such responses of fluidity included mini-slump, flow time using Marsh cone and cohesion measured by Lombardi plate meter and unit weight, and compressive strength at 3 d, 7 d and 28 d. The models are valid for mixes with 0.35 to 0.42 water-to-binder ratio (W/B), 10% to 40% of pulverised fuel ash (PFA) as replacement of cement by mass, 0.02 to 0.06% of viscosity enhancer admixture (VEA), by mass of binder, and 0.3 to 1.2% of superplasticizer (SP), by mass of binder. The derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of composite cement paste are presented. Such parameters can be useful to reduce the test protocol needed for proportioning of composite cement paste. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods which are highlighted. The multi parametric optimization is used in order to establish isoresponses for a desirability function of cement composite paste. Results indicate that the replacement of cement by PFA is compromising the early compressive strength and up 26%, the desirability function decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concrete placed under water should be proportioned to flow readily into place with minimum materials separation. Unlike concrete cast for deep tremie seals, the use of concrete in repairs often necessitates some free fall of the mixture through water. Such placement conditions lead to greater risk of water erosion and segregation, and should be addressed in proportioning highly flowable underwater concrete. This paper evaluates the effect of free-fall height (FFH) of concrete through water on resulting in-place properties. Concrete was cast in blocks measuring 0.54 x 0.44 x 1 m with the initial FFH in water ranging between 0.25 and 0.60 m. In-place compressive and splitting tensile strengths, unit weight, and depth of washed-out and sedimentation materials were determined. In total, 24 highly flowable mixtures with slump flows greater than 500 mm were investigated. The evaluated mixtures were prepared with various hydraulic binders, including conventional Type 10 cement, a binary mixture with 10% of silica fume (SF), and a ternary binder incorporating 20% of fly ash (FA) and 6% of SF. The mixtures were proportioned with water-binder ratios (w/b) ranging between 0.41 and 0.47. Test results show that the increase of FFH of fresh concrete in water can greatly decrease the residual strength and significantly increase the thickness of washed out and sedimentation materials. The incorporation of 10% of SF, or 20% of FA and 6% of SF, and the reduction of the w/b from 0.47 to 0.41 can, however, lead to a significant increase in washout resistance and residual strength. A relationship between residual strength and the coupled factor of free-fall drop of concrete in water and washout resistance is established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the solubility of mefenamic acid (MA), a highly cohesive, poorly water-soluble drug in a copolymer of polyoxyethylene–polyoxypropylene (Lutrol F681), and to understand the effect drug polymer solubility has on in vitro dissolution of MA. Solid dispersions (SD) of MA were prepared by a hot melt method, using Lutrol F681 as a thermoplastic polymeric platform. High-speed differential scanning calorimetry (Hyper-DSC), Raman spectroscopy, powder X-ray diffractometry (PXRD) and hot-stage/?uorescence microscopy were used to assess the solubility of the drug in molten and solid polymer. Drug dissolution studies were subsequently conducted on single-phase solid solutions and biphasic SD using phosphate buffer pH 6.8 as dissolution media. Solubility investigations using Hyper-DSC, Raman spectroscopy and hot-stage microscopy suggested MA was soluble in molten Lutrol F681 up to a concentration of 35% (w/w). Conversely, the solubility in the solidstate matrix was limited to<15% (w/w); determined by Raman spectroscopy, PXRD and ?uorescence microscopy. As expected the dissolution properties of MA were signi?cantly in?uenced by the solubility of the drug in the polymer matrix. At a concentration of 10% (w/w) MA (a single phase solid solution) dissolution of MA in phosphate buffer 6.8 was rapid, whereas at a concentration of 50% (w/w) MA (biphasic SD) dissolution was signi?cantly slower. This study has clearly demonstrated the complexity of drug– polymer binary blends and in particular de?ning the solubility of a drug within a polymeric platform. Moreover, this investigation has demonstrated the signi?cant effect drug solubility within a polymeric matrix has upon the in vitro dissolution properties of solid polymer/drug binary blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durability of concrete is a great concern to all designers, owners and users of reinforced concrete structures. As a result, more restrictive regulations are being introduced in various Codes of Practice dealing with the design of these structures. Attempts are being made by various researchers to develop performance based specification. For this to be successful standard non destructive tests are required which will be used to assess the durability of concretes. In parallel with this approach, a research team in Queen’s University Belfast, U. K., investigated the effect of different mix parameters on workability, strength and various permeation properties. Furthermore, durability parameters such as freeze-thaw salt scaling resistance and carbonation depth were also investigated. The research was part funded by the Department of Environment, Transport and the Regions (DETR). This paper reports of the findings from this study. The results from this investigation showed that some of the non destructive tests used were reasonably well correlated with carbonation and freeze-thaw salt scaling resistance of CEM I concrete. If the mix parameters such as aggregate-cement ratio or water-cement ratio are known, better correlation can be obtained. Further investigation is required varying other mix parameters including various aggregates, admixtures and air entrainments before the result can be used for developing mix design methods for durable concretes. Also long term site tests are required to validate the results obtained from the accelerated laboratory tests used to study the carbonation resistance and freeze-thaw salt scaling resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to study the textural properties of edible films made from sour (acid) whey for food wrapping application. Acid whey is often regarded as a waste product, obtained as a watery effluent in the manufacturing of cottage cheese. In general, owing to its high nutritional value, whey has gained importance as an additive in food manufacturing processes and in health drink formulations. In this work, fresh sour whey was used to make edible films. The proteins in the whey were concentrated by ultrafiltration to reduce the water content. Only natural ingredients such as acid whey and agar were used to form the film under controlled heating (650 W) in a microwave oven. The structural and surface characteristics of the films were tested by a texture analyser and scanning electron micrographs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The light emission spectrum from a scanning tunnelling microscope (LESTM) is investigated as a function of relative humidity and shown to provide a novel and sensitive means for probing the growth and properties of a water meniscus on the nanometre scale. An empirical model of the light emission process is formulated and applied successfully to replicate the decay in light intensity and spectral changes observed with increasing relative humidity. The modelling indicates a progressive water filling of the tip-sample junction with increasing humidity or, more pertinently, of the volume of the localized surface plasmons responsible for light emission; it also accounts for the effect of asymmetry in structuring of the water molecules with respect to the polarity of the applied bias. This is juxtaposed with the case of a non-polar liquid in the tip-sample nanocavity where no polarity dependence of the light emission is observed. In contrast to the discrete detection of the presence/absence of a water bridge in other scanning probe experiments through measurement of the feedback parameter for instrument control, LESTM offers a means of continuously monitoring the development of the water bridge with sub-nanometre sensitivity. The results are relevant to applications such as dip-pen nanolithography and electrochemical scanning probe microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obestatin is a peptide produced in the oxyntic mucosa of the stomach and co-localizes with ghrelin on the periphery of pancreatic islets. Several studies demonstrate that obestatin reduces food and water intake, decreases body weight gain, inhibits gastrointestinal motility, and modulates glucose-induced insulin secretion. In this study we evaluated the acute metabolic effects of human obestatin {1-23} and fragment peptides {1-10} or {11-23} in high-fat fed mice, and then investigated their solution structure by NMR spectroscopy and molecular modelling. Obestatins {1-23} and {11-23} significantly reduced food intake (86% and 90% respectively) and lowered glucose responses to feeding, whilst leaving insulin responses unchanged. No metabolic changes could be detected following the administration of obestatin (1-10). In aqueous solution none of the obestatin peptides possessed secondary structural features. However, in a 2,2,2-trifluoroethanol (TFE-d(3))-H2O solvent mixture, the structure of obestatin {1-23} was characterized by an a-helix followed by a single turn helix conformation between residues Pro(4) and Gln(15) and His(19) and Ala(22) respectively. Obestatin {1-10} showed no structural components whereas {11-23} contained an a-helix between residues Val(14) and Ser(20) in a mixed solvent. These studies are the first to elucidate the structure of human obestatin and provide clear evidence that the observed a-helical structures are critical for in vivo activity. Future structure/function studies may facilitate the design of novel therapeutic agents based on the obestatin peptide structure. (C) 2010 Elsevier Inc. All rights reserved.