65 resultados para Viscosity and digestion
Resumo:
A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent free,
IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.
Resumo:
The viscosity ? for eighteen binary mixtures cyclopentane + cyclohexane and + cyclooctane; cyclohexane + cycloheptane, + cyclooctane, + methylcyclohexane, + n-hexane, + n-heptane, + n-octane, + i-octane, + benzene, + toluene, + ethylbenzene, + p-xylene, and + propylbenzene; methylcyclohexane + n-hexane, + i-octane, and + benzene; and cyclooctane + benzene have been reported at 303.15 K over the entire range of composition. The viscosity deviations ?? and excess Gibbs energy of activation ?G*E of viscous flow based on Eyring's theory have been calculated. The effects of molecular sizes and shapes of the component molecules and of interaction energy in the mixture have been discussed. The viscosity data have been correlated with the equations of Grunberg and Nissan, Hind, McLaughlin and Ubbelohde, Tamura and Kurata, Katti and Chaudhri, McAllister, Heric and Brewer, and of Auslaender.
Resumo:
There is an increasing need to identify the effect of mix composition on the rheological properties of cementitious grouts using minislump, Marsh cone, cohesion plate, washout test, and cubes to determine the fluidity, the cohesion, and other mechanical properties of grouting applications. Mixture proportioning involves the tailoring of several parameters to achieve adequate fluidity, cohesion, washout resistance and compressive strength. This paper proposes a statistical design approach using a composite fractional factorial design which was carried out to model the influence of key parameters on the performance of cement grouts. The responses relate to performance included minislump, flow time using Marsh cone, cohesion measured by Lombardi plate meter, washout mass loss and compressive strength at 3, 7, and 28 days. The statistical models are valid for mixtures with water-to-binder ratio of 0.37–0.53, 0.4–1.8% addition of high-range water reducer (HRWR) by mass of binder, 4–12% additive of silica fume as replacement of cement by mass, and 0.02–0.8% addition of viscosity modifying admixture (VMA) by mass of binder. The models enable the identification of underlying factors and interactions that influence the modeled responses of cement grout. The comparison between the predicted and measured responses indicated good accuracy of the established models to describe the effect of the independent variables on the fluidity, cohesion, washout resistance and the compressive strength. This paper demonstrates the usefulness of the models to better understand trade-offs between parameters. The multiparametric optimization is used to establish isoresponses for a desirability function for cement grout. An increase of HRWR led to an increase of fluidity and washout, a reduction in plate cohesion value, and a reduction in the Marsh cone time. An increase of VMA demonstrated a reduction of fluidity and the washout mass loss, and an increase of Marsh cone time and plate cohesion. Results indicate that the use of silica fume increased the cohesion plate and Marsh cone, and reduced the minislump. Additionally, the silica fume improved the compressive strength and the washout resistance.
Resumo:
Fluidised hot melt granulation (FHMG) is a novel granulation technique for processing pharmaceutical powders. Several process and formulation parameters have been shown to significantly influence granulation characteristics within FHMG. In this study we have investigated the effect of the binder properties (binder particle size and binder viscosity) on agglomerate growth mechanisms within FHMG. Low-melting point co-polymers of polyoxyethylene–polyoxypropylene (Lutrol® F68 Poloxamer 188 and Lutrol® F127 Poloxamer 407) were used as meltable binders for FHMG, while standard ballotini beads were used as model fillers for this process. Standard sieve analysis was used to determine the size distribution of granules whereas we utilised fluorescence microscopy to investigate the distribution of binder within granules. This provided further insight into the growth mechanisms during FHMG. Binder particle size and viscosity were found to affect the onset time of granulation. Agglomerate growth achieved equilibrium within short time-scales and was shown to proceed by two competing processes, breakage of formed granules and re-agglomeration of fractured granules. Breakage was affected by the initial material properties (binder size and viscosity). When using binder with a small particle size (<250 µm), agglomerate growth via a distribution mechanism dominated. Increasing the binder particle size shifted the granulation mechanism such that agglomerates were formed predominantly via immersion. A critical ratio between binder diameter and filler has been calculated and this value may be useful for predicting or controlling granulation growth processes.
Resumo:
The decline in viable numbers of Salmonella typhimurium, Yersinia enterocolitica and Listeria monocytogenes in beef cattle slurry is temperature-dependent; they decline more rapidly at 17-degrees-C than at 4-degrees-C. Mesophilic anaerobic digestion caused an initial rapid decline in the viable numbers of Escherichia coli, Salm. typhimurium, Y. enterocolitica and L. monocytogenes. This was followed by a period in which the viable numbers were not reduced by 90%. The T90 values of E. coli, Salm. typhimurium and Y. enterocolitica ranged from 0.7 to 0.9 d during batch digestion and 1.1 to 2-5 d during semi-continuous digestion. Listeria monocytogenes had a significantly higher mean T90 value during semi-continuous digestion (35.7 d) than batch digestion (12.3 d). Anaerobic digestion had little effect in reducing the viable numbers of Campylobacter jejuni.
Resumo:
Densities and viscosities were measured as a function of temperature for six ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium ethylsulfate and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide. The density and the viscosity were obtained using a vibrating tube densimeter from Anton Paar and a rheometer from Rheometrics Scientific at temperatures up to 393 K and 388 K with an accuracy of 10-3 g cm-3 and 1%, respectively. The effect of the presence of water on the measured values was also examined by studying both dried and water-saturated samples. A qualitative analysis of the evolution of density and viscosity with cation and anion chemical structures was performed. © The Royal Society of Chemistry 2006.
Resumo:
The objective of this research was to optimise the rheological parameters, hardened properties, and setting times of cement grouts containing metakaolin (MTK), viscosity-modifying agent (VMA) and superplasticiser (SP). All mixes were made with water-to-binder ratio (W/B) of 0.40. The replacement of cement by MTK was varied from 6% to 20% (by mass), and dosages of SP and VMA were varied from 0.3% to 1.4%, and 0.01% and 0.06% (by mass of binder), respectively. Increased SP led to an increase in fluidity, reduction in flow time, plate cohesion, rheological parameters, and an increase in the setting times. Increased VMA demonstrated a reduction in fluidity, an increase in Marsh cone time, plate cohesion, yield stress, and plastic viscosity. Results indicate that the use of MTK increased yield stress, plastic viscosity, cohesion plate, and flow time due to the higher surface area associated with an increase in the water demand. MTK reduced mini-slump and setting times, and improved compressive strength.
Resumo:
Generally, the solid and liquid fractions (digestate) from Anaerobic Digestion (AD) energy production are considered as waste. This has a negative impact on the sustainability of AD processes because of the financial outlay required to treat digestate before being discharged into municipal water treatment plants or natural water bodies. The main aim of this research was to investigate feasibility of producing an organic fertiliser using anaerobic digestate and limestone powders as the raw materials employing a high shear granulation process. Two-level factorial experimental design was used to determine the influence of granulation process variables on, the strength, resistance to attrition and yield of the granules. It was concluded from the study that it is technically feasible to produce organic fertiliser granules of acceptable strength and product yield. Increasing the liquid-to-solid ratio during granulation leads to increased granule strength and better product yield. Although the strength of the granules produced was lower than typical strength of commercial synthetic fertiliser granules (about 5 to 7. MPa), this could be improved by mixing the digestate with a polymeric binder or coating the particles post granulation. © 2012 Elsevier B.V.