160 resultados para Vascular endothelial growth factor
Resumo:
In most countries, diabetic retinopathy is the most frequently occurring complication of diabetes mellitus and remains a leading cause of vision loss globally. Its etiology and pathology have been extensively studied for half a century, yet there are disappointingly few therapeutic options. Although some new treatments have been introduced for diabetic macular edema (DME) (e.g. intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') and new steroids), up to 50% of patients fail to respond. Furthermore, for people with proliferative diabetic retinopathy (PDR), laser photocoagulation remains a mainstay therapy, even though it is inherently a destructive procedure. This review summarizes the clinical features of diabetic retinopathy and its risk factors. It describes details of retinal pathology and the cell culture approaches and animal models that are used to mimic its key components, advance understanding of its pathogenesis, and enable identification of new therapeutic targets. We emphasise that although there have been significant advances, there is still a pressing need for a better understanding basic mechanisms to enable development of reliable and robust means to identify patients at highest risk, and to intervene effectively before vision loss occurs.
Resumo:
BACKGROUND: We proposed to exploit hypoxia-inducible factor (HIF)-1alpha overexpression in prostate tumours and use this transcriptional machinery to control the expression of the suicide gene cytosine deaminase (CD) through binding of HIF-1alpha to arrangements of hypoxia response elements. CD is a prodrug activation enzyme, which converts inactive 5-fluorocytosine to active 5-fluorouracil (5-FU), allowing selective killing of vector containing cells.
METHODS: We developed a pair of vectors, containing either five or eight copies of the hypoxia response element (HRE) isolated from the vascular endothelial growth factor (pH5VCD) or glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (pH8GCD) gene, respectively. The kinetics of the hypoxic induction of the vectors and sensitization effects were evaluated in 22Rv1 and DU145 cells in vitro.
RESULTS: The CD protein as selectively detected in lysates of transiently transfected 22Rv1 and DU145 cells following hypoxic exposure. This is the first evidence of GAPDH HREs being used to control a suicide gene therapy strategy. Detectable CD levels were sustained upon reoxygenation and prolonged hypoxic exposures. Hypoxia-induced chemoresistance to 5-FU was overcome in both cell lines treated with this suicide gene therapy approach. Hypoxic transfectants were sensitized to prodrug concentrations that were ten-fold lower than those that are clinically relevant. Moreover, the surviving fraction of reoxygenated transfectants could be further reduced with the concomitant delivery of clinically relevant single radiation doses.
CONCLUSIONS: This strategy thus has the potential to sensitize the hypoxic compartment of prostate tumours and improve the outcome of current therapies.
Resumo:
Tumor cells require angiogenesis to deliver nutrients and oxygen to support their fast growth and metabolism. The vascular endothelial growth factor (VEGF) pathway plays an important role in promoting angiogenesis, including tumor-induced angiogenesis. Recent clinical trials have demonstrated the benefit of targeting VEGF in the treatment of glioblastoma. However, the prognostic significance of the expression of VEGFA and its receptors VEGFR1 (FLT1) and VEGFR2 (KDR) are still largely elusive. In the present study, we aimed to investigate the prognostic significance of these three factors, alone or in combination, in glioma patients. Gene mRNA expression was extracted from three independent brain tumor cohorts totaling 242 patients and the association between gene expression and survival was tested. We found that when VEGFA, FLT1 and KDR expressions were considered alone, only VEGFA demonstrated a significant association with patient survival. Patients with high expression of both VEGFA and either receptor had significantly worse survival than patients expressing both factors at a low level. Importantly, we found that those patients whose tumors overexpressed all three genes had a significantly shorter survival compared to those patients with a low level expression of these genes. Our results suggest that a high level expression of VEGFA and its receptors, both FLT1 and KDR, may be required for brain tumor progression, and that these three factors should be considered together as a prognostic indicator for brain tumor patients.
Resumo:
Objective - The reported association between calibrated integrated backscatter (cIB) and myocardial fibrosis is based on study of patients with dilated or hypertrophic cardiomyopathy and extensive (mean 15–34%) fibrosis. Its association with lesser degrees of fibrosis is unknown. We examined the relationship between cIB and myocardial fibrosis in patients with coronary artery disease.
Methods - Myocardial histology was examined in left ventricular epicardial biopsies from 40 patients (29 men and 11 women) undergoing coronary artery bypass graft surgery, who had preoperative echocardiography with cIB measurement.
Results - Total fibrosis (picrosirius red staining) varied from 0.7% to 4%, and in contrast to previous reports, cIB showed weak inverse associations with total fibrosis (r=−0.32, p=0.047) and interstitial fibrosis (r=−0.34, p=0.03). However, cIB was not significantly associated with other histological parameters, including immunostaining for collagens I and III, the advanced glycation end product (AGE) Nε-(carboxymethyl)lysine (CML) and the receptor for AGEs (RAGE). When biomarkers were examined, cIB was weakly associated with log plasma levels of amino-terminal pro-B-type natriuretic peptide (r=0.34, p=0.03), creatinine (r=0.33, p=0.04) and glomerular filtration rate (r=−0.33, p=0.04), and was more strongly associated with log plasma levels of soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) (r=0.44, p=0.01) and soluble RAGE (r=0.53, p=0.002).
Conclusions - Higher cIB was not a marker of increased myocardial fibrosis in patients with coronary artery disease, but was associated with higher plasma levels of sVEGFR-1 and soluble RAGE. The role of cIB as a non-invasive index of fibrosis in clinical studies of patients without extensive fibrosis is, therefore, questionable.
Resumo:
PURPOSE: To review key clinical issues underlying the assessment of in vivo efficacy when using antiangiogenic therapies for cancer treatment.
METHODS: Literature relevant to use of antiangiogenic therapies in cancer was reviewed, with particular emphasis on the assessment of in vivo efficacy of these agents, as well as additional angiogenic factors that could play a role in escape from angiogenesis inhibition.
RESULTS: In order to grow and metastasize, tumors need to continually acquire new blood supplies; therefore, therapeutic inhibition of angiogenesis has become a component of anticancer treatment for many tumor types. Bevacizumab, a humanized monoclonal antibody directed at vascular endothelial growth factor A (VEGF-A), has shown activity in combination with chemotherapy in metastatic colorectal cancer. Nevertheless, the use of antiangiogenic therapies remains suboptimal; specifically, optimal dose, duration of therapy, and combination of agents remain unknown. Also, at present, it is not possible to determine which patients are most likely to respond to a given form of antiangiogenic therapy. There has been increased recognition of alternative pathways possibly associated with disease progression in patients undergoing antiangiogenic therapy targeted at VEGF-A. Multiligand-targeted antiangiogenic therapies, such as ziv-aflibercept (formerly known as aflibercept, VEGF Trap), are currently undergoing clinical evaluation. Ziv-aflibercept forms monomeric complexes with VEGF-A, VEGF-B, and PlGF, which have a long half-life, allowing optimization of ziv-aflibercept doses and angiogenic blockage.
CONCLUSIONS: Although antiangiogenic therapies have increased treatment options for cancer patients, their use is limited by a lack of established and standardized methodology to evaluate their efficacy in vivo. Circulating endothelial cells, hypertension, and several molecular and imaging-based markers have potential for use as biomarkers in these patients and may better define appropriate patient populations.
Resumo:
For physicians facing patients with organ-limited metastases from colorectal cancer, tumor shrinkage and sterilization of micrometastatic disease is the main goal, giving the opportunity for secondary surgical resection. At the same time, for the majority of patients who will not achieve a sufficient tumor response, disease control remains the predominant objective. Since FOLFOX or FOLFIRI have similar efficacies, the challenge is to define which could be the most effective targeted agent (anti-EGFR or anti-VEGF) to reach these goals. Therefore, a priori molecular identification of patients that could benefit from anti-EGFR or anti-VEGF monoclonal antibodies (i.e. the currently approved targeted therapies for metastatic colorectal cancer) is of critical importance. In this setting, the KRAS mutation status was the first identified predictive marker of response to anti-EGFR therapy. Since it has been demonstrated that tumors with KRAS mutation do not respond to anti-EGFR therapy, KRAS status must be determined prior to treatment. Thus, for KRAS wild-type patients, the choices that remain are either anti-VEGF or anti-EGFR. In this review, we present the most updated data from translational research programs dealing with the identification of biomarkers for response to targeted therapies.
Resumo:
PURPOSE: There is substantial germline genetic variability within angiogenesis pathway genes, thereby causing interindividual differences in angiogenic capacity and resistance to antiangiogenesis therapy. We investigated germline polymorphisms in genes involved in VEGF-dependent and -independent angiogenesis pathways to predict clinical outcome and tumor response in metastatic colorectal cancer (mCRC) patients treated with bevacizumab and oxaliplatin-based chemotherapy.
EXPERIMENTAL DESIGN: A total of 132 patients treated with first-line bevacizumab and FOLFOX or XELOX were included in this study. Genomic DNA was isolated from whole-blood samples by PCR-RFLP or direct DNA sequencing. The endpoints of the study were progression-free survival (PFS), overall survival (OS), and response rate (RR).
RESULTS: The minor alleles of EGF rs444903 A>G and IGF-1 rs6220 A>G were associated with increased OS and remained significant in multivariate Cox regression analysis (HR: 0.52; 95% CI: 0.31-0.87; adjusted P = 0.012 and HR: 0.60; 95% CI: 0.36-0.99; adjusted P = 0.046, respectively). The minor allele of HIF1α rs11549465 C>T was significantly associated with increased PFS but lost its significance in multivariate analysis. CXCR1 rs2234671 G>C, CXCR2 rs2230054 T>C, EGFR rs2227983 G>A, and VEGFR-2 rs2305948 C>T predicted tumor response, with CXCR1 rs2234671 G>C remaining significant in multiple testing (P(act) = 0.003).
CONCLUSION: In this study, we identified common germline variants in VEGF-dependent and -independent angiogenesis genes predicting clinical outcome and tumor response in patients with mCRC receiving first-line bevacizumab and oxaliplatin-based chemotherapy.
Resumo:
Angiogenesis is a crucial component of tumor growth and metastasis. Targeting the vascular endothelial growth factor pathway represents therapeutic potentials for treating cancer. To date, 3 Food and Drug Administration-approved agents targeting angiogenesis have been developed, bevacizumab, sunitinib, and sorafenib. However, no validated biomarkers are available to identify those patients who are likely to benefit from antiangiogenesis therapy. Molecular biomarker research in antiangiogenesis inhibition is an actively growing field. Although current data are extremely promising, it is still uncertain which biomarker(s) can reliably predict their efficacy. With increasing numbers of inhibitors being developed, the need for biomarkers is more critical than ever. This review will focus on translational research that strives to identify molecular biomarkers (tissue, circulating and genomic) for approved antiangiogenesis therapies that can indicate benefit, resistance, and toxicity.
Resumo:
BACKGROUND: Diabetic retinopathy is an important cause of visual loss. Laser photocoagulation preserves vision in diabetic retinopathy but is currently used at the stage of proliferative diabetic retinopathy (PDR).
OBJECTIVES: The primary aim was to assess the clinical effectiveness and cost-effectiveness of pan-retinal photocoagulation (PRP) given at the non-proliferative stage of diabetic retinopathy (NPDR) compared with waiting until the high-risk PDR (HR-PDR) stage was reached. There have been recent advances in laser photocoagulation techniques, and in the use of laser treatments combined with anti-vascular endothelial growth factor (VEGF) drugs or injected steroids. Our secondary questions were: (1) If PRP were to be used in NPDR, which form of laser treatment should be used? and (2) Is adjuvant therapy with intravitreal drugs clinically effective and cost-effective in PRP?
ELIGIBILITY CRITERIA: Randomised controlled trials (RCTs) for efficacy but other designs also used.
REVIEW METHODS: Systematic review and economic modelling.
RESULTS: The Early Treatment Diabetic Retinopathy Study (ETDRS), published in 1991, was the only trial designed to determine the best time to initiate PRP. It randomised one eye of 3711 patients with mild-to-severe NPDR or early PDR to early photocoagulation, and the other to deferral of PRP until HR-PDR developed. The risk of severe visual loss after 5 years for eyes assigned to PRP for NPDR or early PDR compared with deferral of PRP was reduced by 23% (relative risk 0.77, 99% confidence interval 0.56 to 1.06). However, the ETDRS did not provide results separately for NPDR and early PDR. In economic modelling, the base case found that early PRP could be more effective and less costly than deferred PRP. Sensitivity analyses gave similar results, with early PRP continuing to dominate or having low incremental cost-effectiveness ratio. However, there are substantial uncertainties. For our secondary aims we found 12 trials of lasers in DR, with 982 patients in total, ranging from 40 to 150. Most were in PDR but five included some patients with severe NPDR. Three compared multi-spot pattern lasers against argon laser. RCTs comparing laser applied in a lighter manner (less-intensive burns) with conventional methods (more intense burns) reported little difference in efficacy but fewer adverse effects. One RCT suggested that selective laser treatment targeting only ischaemic areas was effective. Observational studies showed that the most important adverse effect of PRP was macular oedema (MO), which can cause visual impairment, usually temporary. Ten trials of laser and anti-VEGF or steroid drug combinations were consistent in reporting a reduction in risk of PRP-induced MO.
LIMITATION: The current evidence is insufficient to recommend PRP for severe NPDR.
CONCLUSIONS: There is, as yet, no convincing evidence that modern laser systems are more effective than the argon laser used in ETDRS, but they appear to have fewer adverse effects. We recommend a trial of PRP for severe NPDR and early PDR compared with deferring PRP till the HR-PDR stage. The trial would use modern laser technologies, and investigate the value adjuvant prophylactic anti-VEGF or steroid drugs.
STUDY REGISTRATION: This study is registered as PROSPERO CRD42013005408.
FUNDING: The National Institute for Health Research Health Technology Assessment programme.
Resumo:
Introduction: Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly mostly due to the development of neovascular AMD (nAMD) or geographic atrophy (GA). Intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents are an effective therapeutic option for nAMD. Following anti-VEGF treatments, increased atrophy of the retinal pigment epithelium (RPE) and choriocapillaries that resembles GA has been reported. We sought to evaluate the underlying genetic influences that may contribute to this process. Methods: We selected 68 single nucleotide polymorphisms (SNPs) from genes previously identified as susceptibility factors in AMD, along with 43 SNPs from genes encoding the VEGF protein and its cognate receptors as this pathway is targeted by treatment. We enrolled 467 consecutive patients (Feb 2009 to October 2011) with nAMD who received anti-VEGF therapy. The acutely presenting eye was designated as the study eye and retinal tomograms graded for macular atrophy at study exit. Statistical analysis was performed using PLINK to identify SNPs with a P value < 0.01. Logistic regression models with macular atrophy as dependent variable were fitted with age, gender, smoking status, common genetic risk factors and the identified SNPs as explanatory variables. Results: Grading for macular atrophy was available in 304 study eyes and 70% (214) were classified as showing macular atrophy. In the unadjusted analysis we observed significant associations between macular atrophy and two independent SNPs in the APCS gene: rs6695377: odds ratio (OR) = 1.98; 95% confidence intervals (CI): 1.23, 3.19; P = 0.004; rs1446965: OR = 2.49, CI: 1.29, 4.82; P = 0.006 and these associations remained significant after adjustment for covariates. Conclusions: VEGF is a mitogen and growth factor for choroidal blood vessels and the RPE and its inhibition could lead to atrophy of these key tissues. Anti-VEGF treatment can interfere with ocular vascular maintenance and may be associated with RPE and choroidal atrophy. As such, these medications, which block the effects of VEGF, may influence the development of GA. The top associated SNPs are found in the APCS gene, a highly conserved glycoprotein that encodes Serum amyloid P (SAP) which opsonizes apoptotic cells. SAP can bind to and activate complement components via binding to C1q, a mechanism by which SAP may remove cellular debris, affecting regulation of the three complement pathways.
Resumo:
Current therapies that target vascular endothelial growth factor (VEGF) have become a mainstream therapy for the management of diabetic macular oedema. The treatment involves monthly repeated intravitreal injections of VEGF inhibitors. VEGF is an important growth factor for many retinal cells, including different types of neurons. In this study, we investigated the adverse effect of multiple intravitreal anti-VEGF injections (200 ng/μl/eye anti-mouse VEGF164, once every 2 weeks totalling 5-6 injections) to retinal neurons in Ins2(Akita) diabetic mice. Funduscopic examination revealed the development of cotton wool spot-like lesions in anti-VEGF treated Ins2(Akita) mice after 5 injections. Histological investigation showed focal swellings of retinal nerve fibres with neurofilament disruption. Furthermore, anti-VEGF-treated Ins2(Akita) mice exhibited impaired electroretinographic responses, characterized by reduced scotopic a- and b-wave and oscillatory potentials. Immunofluorescent staining revealed impairment of photoreceptors, disruptions of synaptic structures and loss of amacrine and retinal ganglion cells in anti-VEGF treated Ins2(Akita) mice. Anti-VEGF-treated WT mice also presented mild amacrine and ganglion cell death, but no overt abnormalities in photoreceptors and synaptic structures. At the vascular level, exacerbated albumin leakage was observed in anti-VEGF injected diabetic mice. Our results suggest that sustained intraocular VEGF neutralization induces retinal neurodegeneration and vascular damage in the diabetic eye.
Resumo:
RATIONALE: Cigarette smoke exposure is associated with an increased risk of the acute respiratory distress syndrome (ARDS); however, the mechanisms underlying this relationship remain largely unknown.
OBJECTIVE: To assess pathways of lung injury and inflammation in smokers and non-smokers with and without lipopolysaccharide (LPS) inhalation using established biomarkers.
METHODS: We measured plasma and bronchoalveolar lavage (BAL) biomarkers of inflammation and lung injury in smokers and non-smokers in two distinct cohorts of healthy volunteers, one unstimulated (n=20) and one undergoing 50 μg LPS inhalation (n=30).
MEASUREMENTS AND MAIN RESULTS: After LPS inhalation, cigarette smokers had increased alveolar-capillary membrane permeability as measured by BAL total protein, compared with non-smokers (median 274 vs 208 μg/mL, p=0.04). Smokers had exaggerated inflammation compared with non-smokers, with increased BAL interleukin-1β (p=0.002), neutrophils (p=0.02), plasma interleukin-8 (p=0.003), and plasma matrix metalloproteinase-8 (p=0.006). Alveolar epithelial injury after LPS was more severe in smokers than non-smokers, with increased plasma (p=0.04) and decreased BAL (p=0.02) surfactant protein D. Finally, smokers had decreased BAL vascular endothelial growth factor (VEGF) (p<0.0001) with increased soluble VEGF receptor-1 (p=0.0001).
CONCLUSIONS: Cigarette smoke exposure may predispose to ARDS through an abnormal response to a 'second hit,' with increased alveolar-capillary membrane permeability, exaggerated inflammation, increased epithelial injury and endothelial dysfunction. LPS inhalation may serve as a useful experimental model for evaluation of the acute pulmonary effects of existing and new tobacco products.
Resumo:
Aims/hypothesis: We aimed to determine whether plasma lipoproteins, after leakage into the retina and modification by glycation and oxidation, contribute to the development of diabetic retinopathy in a mouse model of type 1 diabetes.
Methods: To simulate permeation of plasma lipoproteins intoretinal tissues, streptozotocin-induced mouse models of diabetes and non-diabetic mice were challenged with intravitreal injection of human ‘highly-oxidised glycated’ low-density lipoprotein (HOG-LDL), native- (N-) LDL, or the vehicle PBS.Retinal histology, electroretinography (ERG) and biochemical markers were assessed over the subsequent 14 days.
Results: Intravitreal administration of N-LDL and PBS had noeffect on retinal structure or function in either diabetic or non-diabetic animals. In non-diabetic mice, HOG-LDL elicited a transient inflammatory response without altering retinal function,but in diabetic mice it caused severe, progressive retinal injury, with abnormal morphology, ERG changes, vascular leakage, vascular endothelial growth factor overexpression, gliosis, endoplasmic reticulum stress, and propensity to apoptosis.
Conclusions/interpretation: Diabetes confers susceptibility to retinal injury imposed by intravitreal injection of modified LDL. The data add to the existing evidence that extravasated, modified plasma lipoproteins contribute to the propagation of diabetic retinopathy. Intravitreal delivery of HOG-LDL simulates a stress known to be present, in addition to hyperglycaemia, in human diabetic retinopathy once blood retinal barriers are compromised.
Resumo:
Borderline ovarian tumors represent an understudied subset of ovarian tumors. Most studies investigating aberrations in borderline tumors have focused on KRAS/BRAF mutations. In this study, we conducted an extensive analysis of mutations and single-nucleotide polymorphisms (SNPs) in borderline ovarian tumors. Using the Sequenom MassArray platform, we investigated 160 mutations/polymorphisms in 33 genes involved in cell signaling, apoptosis, angiogenesis, cell cycle regulation and cellular senescence. Of 52 tumors analyzed, 33 were serous, 18 mucinous and 1 endometrioid. KRAS c.35G>A p.Gly12Asp mutations were detected in eight tumors (six serous and two mucinous), BRAF V600E mutations in two serous tumors, and PIK3CA H1047Y and PIK3CA E542K mutations in a serous and an endometrioid BOT, respectively. CTNNB1 mutation was detected in a serous tumor. Potentially functional polymorphisms were found in vascular endothelial growth factor (VEGF), ABCB1, FGFR2 and PHLPP2. VEGF polymorphisms were the most common and detected at four loci. PHLPP2 polymorphisms were more frequent in mucinous as compared with serous tumors (P=0.04), with allelic imbalance in one case. This study represents the largest and most comprehensive analysis of mutations and functional SNPs in borderline ovarian tumors to date. At least 25% of borderline ovarian tumors harbor somatic mutations associated with potential response to targeted therapeutics.