219 resultados para Variable exponent Lebesgue spaces


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let H be a (real or complex) Hilbert space. Using spectral theory and properties of the Schatten–Von Neumann operators, we prove that every symmetric tensor of unit norm in HoH is an infinite absolute convex combination of points of the form xox with x in the unit sphere of the Hilbert space. We use this to obtain explicit characterizations of the smooth points of the unit ball of HoH .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let M be the Banach space of sigma-additive complex-valued measures on an abstract measurable space. We prove that any closed, with respect to absolute continuity norm-closed, linear subspace L of M is complemented and describe the unique complement, projection onto L along which has norm 1. Using this fact we prove a decomposition theorem, which includes the Jordan decomposition theorem, the generalized Radon-Nikodym theorem and the decomposition of measures into decaying and non-decaying components as particular cases. We also prove an analog of the Jessen-Wintner purity theorem for our decompositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an example of a complete locally convex m-topology on the algebra of infinite differentiable functions on [0, 1] which is strictly coarser than the natural Frechet-topology but finer than the topology of pointwise convergence. A similar construction works on the algebra of continuous functions on [0, 1]. Using this examples we can separate different notions of diffotopy and homotopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiplicative spectrum of a complex Banach space X is the class K(X) of all (automatically compact and Hausdorff) topological spaces appearing as spectra of Banach algebras (X,*) for all possible continuous multiplications on X turning X into a commutative associative complex algebra with the unity. The properties of the multiplicative spectrum are studied. In particular, we show that K(X^n) consists of countable compact spaces with at most n non-isolated points for any separable hereditarily indecomposable Banach space X. We prove that K(C[0,1]) coincides with the class of all metrizable compact spaces.