55 resultados para Underground cavities


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a scheme to reconstruct arbitrary states of networks composed of quantum oscillators-e. g., the motionalstate of trapped ions or the radiation state of coupled cavities. The scheme involves minimal resources and minimal access, in the sense that it (i) requires only the interaction between a one-qubit probe and a single node of the network; (ii) provides the Weyl characteristic function of the network directly from the data, avoiding any tomographic transformation; (iii) involves the tuning of only one coupling parameter. In addition, we show that a number of quantum properties can be extracted without full reconstruction of the state. The scheme can be used for probing quantum simulations of anharmonic many-body systems and quantum computations with continuous variables. Experimental implementation with trapped ions is also discussed and shown to be within reach of current technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard microporous materials are typically crystalline solids that exhibit a regular array of cavities of uniform size and shape. Packing and directional bonding between molecular building blocks give rise to interstitial pores that confer size and shape-specific sorption properties to the material. In the liquid state interstitial cavities are transient. However, permanent and intrinsic "pores'' can potentially be built into the structure of the molecules that constitute the liquid. With the aid of computer simulations we have designed, synthesised and characterised a series of liquids composed of hollow cage-like molecules, which are functionalised with hydrocarbon chains to make them liquid at accessible temperatures. Experiments and simulations demonstrate that chain length and size of terminal chain substituents can be used to tune, within certain margins, the permanence of intramolecular cavities in such neat liquids. Simulations identify a candidate "porous liquid'' in which 30% of the cages remain empty in the liquid state. Absorbed methane molecules selectively occupy these empty cavities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tunnel construction planning requires careful consideration of the spoil management part, as this involves environmental, economic and legal requirements. In this paper a methodological approach that considers the interaction between technical and geological factors in determining the features of the resulting muck is proposed. This gives indications about the required treatments as well as laboratory and field characterisation tests to be performed to assess muck recovery alternatives. While this reuse is an opportunity for excavations in good quality homogeneous grounds (e.g. granitic mass), it is critical for complex formation. This approach has been validated, at present, for three different geo-materials resulting from a tunnel excavation carried out with a large diameter Earth Pressure Balance Shield (EPB) through a complex geological succession. Physical parameters and technological features of the three materials have been assessed, according to their valorisation potential, for defining re-utilisation patterns. The methodology proved to be effective and the laboratory tests carried out on the three materials allowed the suitability and treatment effectiveness for each muck recovery strategy to be defined. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, undergraduate students in University College Cork (UCC) have been taught to use amalgam as the first choice material for direct restoration of posterior cavities. Since 2005 the use of composite resins has replaced amalgam as the first choice material. An audit was conducted of all direct restorations placed by final year students from UCC from 2004 until 2009. Results showed that over a six year period, final year UCC dental undergraduate students placed proportionately more direct composite resin restorations and significantly fewer amalgam restorations. The need for and undergraduate exposure to, provision of amalgam restorations may have to be revisited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The buried and semi-buried bunker, bulwark since the early eighteenth century against increasingly sophisticated forms of ordnance, emerged in increasing number in Europe throughout the twentieth century across a series of scales from the household Anderson shelter to the vast infrastructural works of the Maginot and Siegfried lines, or the Atlantic Wall. Its latest proliferation took place during the Cold War. From these perspectives, it is as emblematic of modernity as the department store, the great exhibition, the skyscraper or the machine-inspired domestic space advocated by Le Corbusier. It also represents the obverse, or perhaps a parodic iteration, of the preoccupations of early architectural modernism: a vast underground international style, cast in millions of tons of thick, reinforced concrete retaining walls, whose spatial relationship to the landscape above was strictly mediated through the periscope, the loop-hole, the range finder and the strategic necessity to both resist and facilitate the technologies and scopic regimes of weaponry. Embarking from Bunker Archaeology, this paper critically uncoils Paul Virillo’s observation, that once physically eclipsed in its topographical and technical settings, the bunker’s efficacy would mutate to other domains, retaining and remaking its meaning in another topology during the Cold War. ‘The essence of the new fortress’ he writes ‘is elsewhere, underfoot, invisible from here on in’. Shaped by this impulse, this paper seeks to render visible the bunker’s significance in a wider milieu and, in doing so, excavate some of the relationships between the physical artefact, its implications and its enduring metaphorical and perceptual ghosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradiance were taken at multiple air mass flow rates. It is shown that the length of the collector cavities has a direct impact on the efficiency of the system. It is also shown that beyond a height-to-flow ratio of 0.023m/m<sup>3</sup>/hr/m<sup>2</sup>, no additional heat output is obtained by increasing the collector height for the experimental setup in this study, but these numbers would obviously be different if the experimental setup or test environment (e.g. location and climate) change. An equation for predicting the temperature rise of the BPSC is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analytical solution for the solid stresses in a silo with an internal tube. The research was conducted to support the design of a group of full scale silos with large inner concrete tubes. The silos were blasted and formed out of solid rock underground for storing iron ore pellets. Each of these silos is 40m in diameter and has a 10m diameter concrete tube with five levels of openings constructed at the centre of each rock silo. A large scale model was constructed to investigate the stress regime for the stored pellets and to evaluate the solids flow pattern and the loading on the concrete tube. This paper focuses on the development of an analytical solution for stresses in the iron ore pellets in the silo and the effect of the central tube on the stress regimes. The solution is verified using finite element analysis before being applied to analyse stresses in the solid in the full scale silo and the effect of the size of the tube.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To evaluate the placement of composite materials by new graduates using three alternative placement techniques.Methods: A cohort of 34 recently qualified graduates were asked to restore class II interproximal cavities in plastic teeth using three different techniques.

(i) A conventional incremental filling technique (Herculite XRV) using increments no larger than 2-mm with an initial layer on the cervical floor of the box of 1-mm.
(ii) Flowable bulk fill technique (Dentsply SDR) bulk fill placement in a 3-mm layer followed by an incremental fill of a microhybrid resin
(iii) Bulk fill (Kerr Sonicfill) which involved restorations placed in a 5-mm layer.

The operators were instructed in each technique, didactically and with a hands-on demonstration, prior to restoration placement.
All restorations were cured according to manufacturer’s recommendations. Each participant restored 3 teeth, 1 tooth per treatment technique.
The restorations were evaluated using modified USPHS criteria to assess both the marginal adaptation and the surface texture of the restorations. Blind evaluations were carried out independently by two examiners with the aid of magnification (loupes X2.5). Examiners were standardized prior to evaluation.
Results: Gaps between the tooth margins and the restoration or between the layers of the restoration were found in 13 of Group (i), 3 of Group (ii), and 4 of Group (iii)
Statistical analysis revealed a significant difference between the incrementally filled group (i) and the flowable bulk-fill group (ii) (p=0.0043) and between the incrementally filled (i) and the bulk fill groups (iii) (p=0.012) and no statistical difference (p=0.69) between the bulk filled groups Conclusions: Bulk fill techniques may result in a more satisfactory seal of the cavity margins when restoring with composite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble 'scrambled' porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities.