47 resultados para Two-phase anaerobic digestion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study a two-phase underlay cognitive relay network, where there exists an eavesdropper who can overhear the message. The secure data transmission from the secondary source to secondary destination is assisted by two decode-and-forward (DF) relays. Although the traditional opportunistic relaying technique can choose one relay to provide the best secure performance, it needs to continuously have the channel state information (CSI) of both relays, and may result in a high relay switching rate. To overcome these limitations, a secure switch-and-stay combining (SSSC) protocol is proposed where only one out of the two relays is activated to assist the secure data transmission, and the secure relay switching occurs when the relay cannot support the secure communication any longer. This security switching is assisted by either instantaneous or statistical eavesdropping CSI. For these two cases, we study the system secure performance of SSSC protocol, by deriving the analytical secrecy outage probability as well as an asymptotic expression for the high main-to-eavesdropper ratio (MER) region. We show that SSSC can substantially reduce the system complexity while achieving or approaching the full diversity order of opportunistic relaying in the presence of the instantaneous or statistical eavesdropping CSI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogas from anaerobic digestion of sewage sludge is a renewable resource with high energy content, which is formed mainly of CH4 (40-75 vol.%) and CO2 (15-60 vol.%) Other components such as water (H2O, 5-10 vol.%) and trace amounts of hydrogen sulfide and siloxanes can also be present. A CH4-rich stream can be produced by removing the CO2 and other impurities so that the upgraded bio-methane can be injected into the natural gas grid or used as a vehicle fuel. The main objective of this paper is to develop a new modeling methodology to assess the technical and economic performance of biogas upgrading processes using ionic liquids which physically absorb CO2. Three different ionic liquids, namely the 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-hexyl-3-methylimidazoliumbis[(trifluoromethyl)sulfonyl]imide and trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]imide, are considered for CO2 capture in a pressure-swing regenerative absorption process. The simulation software Aspen Plus and Aspen Process Economic Analyzer is used to account for mass and energy balances as well as equipment cost. In all cases, the biogas upgrading plant consists of a multistage compressor for biogas compression, a packed absorption column for CO2 absorption, a flash evaporator for solvent regeneration, a centrifugal pump for solvent recirculation, a pre-absorber solvent cooler and a gas turbine for electricity recovery. The evaluated processes are compared in terms of energy efficiency, capital investment and bio-methane production costs. The overall plant efficiency ranges from 71-86 % whereas the bio-methane production cost ranges from £6.26-7.76 per GJ (LHV). A sensitivity analysis is also performed to determine how several technical and economic parameters affect the bio-methane production costs. The results of this study show that the simulation methodology developed can predict plant efficiencies and production costs of large scale CO2 capture processes using ionic liquids without having to rely on gas solubility experimental data.