65 resultados para Topological Bifurcation
Resumo:
The paper examines three aspects of demographic change and conjectures about their wider impact on British society. Two features of fertility behaviour are highlighted. The first deals with ethnic variations and the likely continuation of high fertility rates amongst women of South Asian origin. The second involves the continued bifurcation between career women and those for whom motherhood remains a central life project. International migration is also assessed and the contradictions within the 'Fortress Britain' strategy exposed. Britain will continue to receive migrants from overseas and British society will become increasingly multi-ethnic. The paper also examines the tensions between an increasingly ageing population and the development of increased ethnic and cultural diversity. The paper concludes with some implications of these changes for the discipline of sociology itself.
Resumo:
The properties of metasurfaces formed by the entwined spiral arrays on normally magnetised fer-rite substrates have been explored. It is shown that the coupling between the array fundamental topological resonance and the ferromagnetic resonance of the ferrite substrate leads to significant increase of the fractional bandwidth (FBW). The features of resonance transmittance assisted by the volume spin waves excited by the entwined spirals in the ferrite substrate are discussed.
Resumo:
The entanglement spectrum describing quantum correlations in many-body systems has been recently recognized as a key tool to characterize different quantum phases, including topological ones. Here we derive its analytically scaling properties in the vicinity of some integrable quantum phase transitions and extend our studies also to nonintegrable quantum phase transitions in one-dimensional spin models numerically. Our analysis shows that, in all studied cases, the scaling of the difference between the two largest nondegenerate Schmidt eigenvalues yields with good accuracy critical points and mass scaling exponents.
Resumo:
Experimental standing wave oscillations of the interfacial potential across an electrode have been observed in the electrocatalytic oxidation of formic acid on a Pt ring working electrode. The instantaneous potential distribution was monitored by means of equispaced potential microprobes along the electrode. The oscillatory standing waves spontaneously arose from a homogeneous stationary state prior to a Hopf bifurcation if the reference electrode was placed close to the working electrode. Reduced electrolyte concentrations resulted in aperiodic potential patterns, while the presence of a sufficiently large ohmic resistance completely suppressed spatial inhomogeneities. The experimental findings confirm numerical predictions of a reaction-migration formalism: under the chosen geometry, a long-range negative potential coupling between distant points across the ring electrode can lead to oscillatory potential domains of distinct phase. It is further shown that the occurrence of oscillatory standing waves can be rationalized as the electrochemical equivalent of Turing's second bifurcation (wave bifurcation). In the presence of an external resistance, the coupling becomes positive throughout and leads to spatial synchronization.
Resumo:
New techniques are presented for using the medial axis to generate high quality decompositions for generating block-structured meshes with well-placed mesh singularities away from the surface boundaries. Established medial axis based meshing algorithms are highly effective for some geometries, but in general, they do not produce the most favourable decompositions, particularly when there are geometry concavities. This new approach uses both the topological and geometric information in the medial axis to establish a valid and effective arrangement of mesh singularities for any 2-D surface. It deals with concavities effectively and finds solutions that are most appropriate to the geometric shapes. Methods for directly constructing the corresponding decompositions are also put forward.
Resumo:
For the computation of limit cycle oscillations (LCO) at transonic speeds, CFD is required to capture the nonlinear flow features present. The Harmonic Balance method provides an effective means for the computation of LCOs and this paper exploits its efficiency to investigate the impact of variability (both structural a nd aerodynamic) on the aeroelastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled with the structural equations and is validated against time marching analyses. Polynomial chaos expansions are employed for the stochastic investiga tion as a faster alternative to Monte Carlo analysis. Adaptive sampling is employed when discontinuities are present. Uncertainties in aerodynamic parameters are looked at first followed by the inclusion of structural variability. Results show the nonlinear effect of Mach number and it’s interaction with the structural parameters on supercritical LCOs. The bifurcation boundaries are well captured by the polynomial chaos.
Resumo:
The properties of metasurfaces composed of doubly periodic arrays of interwoven quadrifilar spiral conductors on magnetized ferrite substrates have been investigated with the aid of the full-wave electromagnetic simulator. The effects of incident wave polarization and ferrite magnetization on the scattering characteristics have been analysed at both normal and in-plane dc magnetic bias. The features of the fundamental topological resonances in the interwoven spiral arrays on ferrite substrates are illustrated by the simulation results and the effects of ferrite gyrotropy and dispersion on the array resonance response and fractional bandwidth are discussed.
Resumo:
The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.
Resumo:
Mollusks are the most morphologically disparate living animal phylum, they have diversified into all habitats, and have a deep fossil record. Monophyly and identity of their eight living classes is undisputed, but relationships between these groups and patterns of their early radiation have remained elusive. Arguments about traditional morphological phylogeny focus on a small number of topological concepts but often without regard to proximity of the individual classes. In contrast, molecular studies have proposed a number of radically different, inherently contradictory, and controversial sister relationships. Here, we assembled a dataset of 42 unique published trees describing molluscan interrelationships. We used these data to ask several questions about the state of resolution of molluscan phylogeny compared to a null model of the variation possible in random trees constructed from a monophyletic assemblage of eight terminals. Although 27 different unique trees have been proposed from morphological inference, the majority of these are not statistically different from each other. Within the available molecular topologies, only four studies to date have included the deep-sea class Monoplacophora; but 36.4% of all trees are not significantly different. We also present supertrees derived from 2 data partitions and 3 methods, including all available molecular molluscan phylogenies, which will form the basis for future hypothesis testing. The supertrees presented here were not constructed to provide yet another hypothesis of molluscan relationships, but rather to algorithmically evaluate the relationships present in the disparate published topologies. Based on the totality of available evidence, certain patterns of relatedness among constituent taxa become clear. The internodal distance is consistently short between a few taxon pairs, particularly supporting the relatedness of Monoplacophora and the chitons, Polyplacophora. Other taxon pairs are rarely or never found in close proximity, such as the vermiform Caudofoveata and Bivalvia. Our results have specific utility for guiding constructive research planning in order to better test relationships in Mollusca as well as other problematic groups. Taxa with consistently proximate relationships should be the focus of a combined approach in a concerted assessment of potential genetic and anatomical homology, while unequivocally distant taxa will make the most constructive choices for exemplar selection in higher-level phylogenomic analyses.
Resumo:
INTRODUCTION:Cerebral small-vessel disease has been implicated in the development of Alzheimer’sdisease (AD). The retinal microvasculature enables non-invasive visualization andevaluation of the systemic microcirculation. We evaluated retinal microvascular parametersin a case-control study of AD patients and cognitively-normal controls.
METHODS:Retinal images were computationally analyzed and quantitative retinal parameters (caliber,fractal dimension, tortuosity, and bifurcation) measured. Regression models were used tocompute odds ratios (OR) and confidence intervals (CI) for AD with adjustment forconfounders.
RESULTS:Retinal images were available in 213 AD participants and 294 cognitively-normal controls.Persons with lower venular fractal dimension (OR per standard deviation [SD] increase, 0.77[CI: 0.62–0.97]) and lower arteriolar tortuosity (OR per SD increase, 0.78 [CI: 0.63–0.97])were more likely to have AD following appropriate adjustment.
DISCUSSION:Patients with AD have a sparser retinal microvascular network and retinal microvascularvariation may represent similar pathophysiological events within the cerebralmicrovasculature of patients with AD.
Resumo:
This paper outlines the importance of robust interface management for facilitating finite element analysis workflows. Topological equivalences between analysis model representations are identified and maintained in an editable and accessible manner. The model and its interfaces are automatically represented using an analysis-specific cellular decomposition of the design space. Rework of boundary conditions following changes to the design geometry or the analysis idealization can be minimized by tracking interface dependencies. Utilizing this information with the Simulation Intent specified by an analyst, automated decisions can be made to process the interface information required to rebuild analysis models. Through this work automated boundary condition application is realized within multi-component, multi-resolution and multi-fidelity analysis workflows.
Resumo:
We recently demonstrated that incorporation of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of lipopolysaccharide (LPS) is required for transport of LPS to the outer membrane and viability of the Gram-negative bacterium Burkholderia cenocepacia. ArnT is a membrane protein catalyzing the transfer of l-Ara4N to the LPS molecule at the periplasmic face of the inner membrane, but its topology and mechanism of action are not well characterized. Here, we elucidate the topology of ArnT and identify key amino acids that likely contribute to its enzymatic function. PEGylation assays using a cysteineless version of ArnT support a model of 13 transmembrane helices and a large C-terminal region exposed to the periplasm. The same topological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT. Four highly conserved periplasmic residues in B. cenocepacia ArnT, tyrosine-43, lysine-69, arginine-254 and glutamic acid-493, were required for activity. Tyrosine-43 and lysine-69 span two highly conserved motifs, 42RYA44 and 66YFEKP70, that are found in ArnT homologues from other species. The same residues in S. enterica ArnT are also needed for function. We propose these aromatic and charged amino acids participate in either undecaprenyl phosphate-l-Ara4N substrate recognition or transfer of l-Ara4N to the LPS.
Resumo:
New techniques are presented for using the medial axis to generate decompositions on which high quality block-structured meshes with well-placed mesh singularities can be generated. Established medial-axis-based meshing algorithms are effective for some geometries, but in general, they do not produce the most favourable decompositions, particularly when there are geometric concavities. This new approach uses both the topological and geometric information in the medial axis to establish a valid and effective arrangement of mesh singularities for any 2-D surface. It deals with concavities effectively and finds solutions that are most appropriate to the geometric shapes. Resulting meshes are shown for a number of example models.
Resumo:
Loss of species will directly change the structure and potentially the dynamics of ecological communities, which in turn may lead to additional species loss (secondary extinctions) due to direct and/or indirect effects (e.g. loss of resources or altered population dynamics). Furthermore, the vulnerability of food webs to repeated species loss is expected to be affected by food web topology, species interactions, as well as the order in which species go extinct. Species traits such as body size, abundance and connectivity might determine a species' vulnerability to extinction and, thus, the order in which species go primarily extinct. Yet, the sequence of primary extinctions, and their effects on the vulnerability of food webs to secondary extinctions, when species abundances are allowed to respond dynamically, has only recently become the focus of attention. Here, we analyse and compare topological and dynamical robustness to secondary extinctions of model food webs, in the face of 34 extinction sequences based on species traits. Although secondary extinctions are frequent in the dynamical approach and rare in the topological approach, topological and dynamical robustness tends to be correlated for many bottom-up directed, but not for top-down directed deletion sequences. Furthermore, removing species based on traits that are strongly positively correlated to the trophic position of species (such as large body size, low abundance, high net effect) is, under the dynamical approach, found to be as destructive as removing primary producers. Such top-down oriented removal of species are often considered to correspond to realistic extinction scenarios, but earlier studies, based on topological approaches, have found such extinction sequences to have only moderate effects on the remaining community. Thus, our result suggests that the structure of ecological communities, and therefore the integrity of important ecosystem processes could be more vulnerable to realistic extinction sequences than previously believed.
Resumo:
This chapter focuses on the relationship between improvisation and indeterminacy. We discuss the two practices by referring to play theory and game studies and situate it in recent network music performance. We will develop a parallel with game theory in which indeterminacy is seen as a way of articulating situations where structural decisions are left to the discernment of the performers and discuss improvisation as a method of play. The improvisation-indeterminacy relationship is discussed in the context of network music performance, which employs digital networks in the exchange of data between performers and hence relies on topological structures with varying degrees of openness and flexibility. Artists such as Max Neuhaus and The League of Automatic Music Composers initiated the development of a multitude of practices and technologies exploring the network as an environment for music making. Even though the technologies behind “the network” have shifted dramatically since Neuhaus’ use of radio in the 1960’s, a preoccupation with distribution and sharing of artistic agency has remained at the centre of networked practices. Gollo Föllmer, after undertaking an extensive review of network music initiatives, produced a typology that comprises categories as diverse as remix lists, sound toys, real/virtual space installations and network performances. For Föllmer, “the term ‘Net music’ comprises all formal and stylistic kinds of music upon which the specifics of electronic networks leave considerable traces, whereby the electronic networks strongly influence the process of musical production, the musical aesthetic, or the way music is received” (2005: 185).