104 resultados para Time resolved emission spectra
Resumo:
Theoretical emission-line ratios involving Fe xi transitions in the 257-407 A wavelength range are derived using fully relativistic calculations of radiative rates and electron impact excitation cross-sections. These are subsequently compared with both long wavelength channel Extreme-Ultraviolet Imaging Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A) and first-order observations (similar to 235-449 A) obtained by the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A lines of Fe xi are detected in two EIS spectra, confirming earlier identifications of these features, and 276.36 A is found to provide an electron density (N-e) diagnostic when ratioed against the 257.55 A transition. Agreement between theory and observation is found to be generally good for the SERTS data sets, with discrepancies normally being due to known line blends, while the 257.55 A feature is detected for the first time in SERTS spectra. The most useful Fe xi electron density diagnostic is found to be the 308.54/352.67 intensity ratio, which varies by a factor of 8.4 between N-e = 108 and 1011 cm-3, while showing little temperature sensitivity. However, the 349.04/352.67 ratio potentially provides a superior diagnostic, as it involves lines which are closer in wavelength, and varies by a factor of 14.7 between N-e = 108 and 1011 cm-3. Unfortunately, the 349.04 A line is relatively weak, and also blended with the second-order Fe x 174.52 A feature, unless the first-order instrument response is enhanced.
Resumo:
The resonance Raman spectra of the ground state and the lowest excited tripler state of free-base tetraphenylporphyrin and six of its isotopomers have been obtained using two-color time-resolved techniques. Ground-state spectra were recorded using low-energy 447 nm probe laser pulses, and triplet-state spectra were probed, with similar pulses, 30 ns after high-energy excitation with 532 nm pump pulses. Polarization data on both the ground and triplet states are also reported. The resonance Raman spectrum of the triplet is very different from that of the ground state but the combination of extensive isotope substitution with polarization data allows bands in the ground state to be assigned and corresponding bands in the tripler state to be located. Isotope shifts of the same bands in the S-0 and T-1 states are similar, implying that the compositions of the vibrational modes do not change significantly on excitation. Two of the strongest bands in the T-1 spectra are associated with phenyl ring substituents; these are shifted less than 5 cm(-1) between the S-0 and T-1 states so that bonding in the phenyl substituents is barely affected by excitation to the T-1 state. The changes in position of the porphyrin ring bands are larger, but still only tens of cm(-1) or less, the main changes in the spectra being due to differences in relative band intensities in the two states. The relatively small shifts in the porphyrin ring band positions which are observed show that the excitation energy is not localized on a single small region of the molecule but is delocalized over the entire porphyrin skeleton. This picture of an excited species with high chemical reactivity, but with individual bonds only slightly perturbed from the ground state, is contrasted with molecules, such as benzophenone, where excitation causes a large perturbation in the bonding within a single functional group.
Resumo:
Context: The stellar population of the 30 Doradus star-forming region in the Large Magellanic Cloud contains a subset of apparently single, rapidly rotating O-type stars. The physical processes leading to the formation of this cohort are currently uncertain.
Aims: One member of this group, the late O-type star VFTS 399, is found to be unexpectedly X-ray bright for its bolometric luminosity-in this study we aim to determine its physical nature and the cause of this behaviour.
Methods: To accomplish this we performed a time-resolved analysis of optical, infrared and X-ray observations.
Results: We found VFTS 399 to be an aperiodic photometric variable with an apparent near-IR excess. Its optical spectrum demonstrates complex emission profiles in the lower Balmer series and select He i lines-taken together these suggest an OeBe classification. The highly variable X-ray luminosity is too great to be produced by a single star, while the hard, non-thermal nature suggests the presence of an accreting relativistic companion. Finally, the detection of periodic modulation of the X-ray lightcurve is most naturally explained under the assumption that the accretor is a neutron star.
Conclusions: VFTS 399 appears to be the first high-mass X-ray binary identified within 30 Dor, sharing many observational characteristics with classical Be X-ray binaries. Comparison of the current properties of VFTS 399 to binary-evolution models suggests a progenitor mass 25 M⊙ for the putative neutron star, which may host a magnetic field comparable in strength to those of magnetars. VFTS 399 is now the second member of the cohort of rapidly rotating "single" O-type stars in 30 Dor to show evidence of binary interaction resulting in spin-up, suggesting that this may be a viable evolutionary pathway for the formation of a subset of this stellar population.
Resumo:
We report on our findings of the bright, pulsating, helium atmosphere white dwarf GD 358, based on time-resolved optical spectrophotometry. We identify 5 real pulsation modes and at least 6 combination modes at frequencies consistent with those found in previous observations. The measured Doppler shifts from our spectra show variations with amplitudes of up to 5.5 km s-1 at the frequencies inferred from the flux variations. We conclude that these are variations in the line-of-sight velocities associated with the pulsational motion. We use the observed flux and velocity amplitudes and phases to test theoretical predictions within the convective driving framework, and compare these with similar observations of the hydrogen atmosphere white dwarf pulsators (DAVs). The wavelength dependence of the fractional pulsation amplitudes (chromatic amplitudes) allows us to conclude that all five real modes share the same spherical degree, most likely, l=1. This is consistent with previous identifications based solely on photometry. We find that a high signal-to-noise mean spectrum on its own is not enough to determine the atmospheric parameters and that there are small but significant discrepancies between the observations and model atmospheres. The source of these remains to be identified. While we infer Teff =24 kK and log g ~ 8.0 from the mean spectrum, the chromatic amplitudes, which are a measure of the derivative of the flux with respect to the temperature, unambiguously favour a higher effective temperature, 27 kK, which is more in line with independent determinations from ultra-violet spectra.
Resumo:
Few-cycle laser pulses are used to "pump and probe" image the vibrational wavepacket dynamics of a HD+ molecular ion. The quantum dephasing and revival structure of the wavepacket are mapped experimentally with time-resolved photodissociation imaging. The motion of the molecule is simulated using a quantum-mechanical model predicting the observed structure. The coherence of the wavepacket is controlled by varying the duration of the intense laser pulses. By means of a Fourier transform analysis both the periodicity and relative population of the vibrational states of the excited molecular ion have been characterized.
Resumo:
The sheath dynamics in the afterglow of a pulsed inductively coupled plasma, operated in hydrogen, is investigated. It is found that the sheath potential does not fully collapse in the early post-discharge. Time resolved measurements of the positive ion flux in a hydrogen plasma, using a mass resolved ion energy analyser, reveal that a constant 2 eV mean ion energy persists for several hundred micro-seconds in the afterglow. The presence of a finite sheath potential is explained by super-elastic collisions between vibrationally excited hydrogen molecules and electrons in the afterglow, leading to an electron temperature of about 0.5 eV. Plasma density decay times measured using both the mass resolved energy analyser and a Langmuir probe are in good agreement. Vibrational temperatures measured using optical emission spectroscopy support the theory of electron heating through super-elastic collisions with vibrationally excited hydrogen molecules. Measurements are also supported by numerical simulations and modelling results.
Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization
Resumo:
Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.
Resumo:
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup ( = LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of K R = 198 +/- 5 km s(-1). The rotational velocity of the secondary star in V347 Pup is found to be v sin i = 131 +/- 5 km s(-1) and the system inclination is i = 84degrees.0 +/- 2degrees.3. From these parameters we obtain masses of M-1 = 0.63 +/- 0.04 M for the white dwarf primary and M-2 = 0.52 +/- 0.06 M for the M0.5V secondary star, giving a mass ratio of q = 0.83 +/- 0.05. On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc.
Resumo:
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variables AC Cnc and V363 Aur (=Lanning 10). There is evidence of irradiation on the inner hemisphere of the secondary star in both systems, which we correct for using a model that reproduces the observations remarkably well. We find the radial velocity of the secondary star in AC Cnc to be K-R=176+/-3 km s(-1) and its rotational velocity to be v sin i=135+/-3 km s(-1). From these parameters we obtain masses of M-1=0.76+/-0.03 M-circle dot for the white-dwarf primary and M-2=0.77+/-0.05 M-circle dot for the K2+/-1 V secondary star, giving a mass ratio of q=1.02+/-0.04. We measure the radial and rotational velocities of the G7+/-2V secondary star in V363 Aur to be K-R=168+/-5 km s(-1) and v sin i=143+/-5 km s(-1), respectively. The component masses of V363 Aur are M-1=0.90+/-0.06M(circle dot) and M-2=1.06+/-0.11 M-circle dot giving a mass ratio of q=1.17+/-0.07. The mass ratios for AC Cnc and V363 Aur fall within the theoretical limits for dynamically and thermally stable mass transfer. Both systems are similar to the SW Sex stars, exhibiting single-peaked emission lines with transient absorption features, high-velocity S-wave components and phase-offsets in their radial-velocity curves. The Balmer lines in V363 Aur show a rapid increase in flux around phase 0 followed by a rapid decrease, which we attribute to the eclipse of an optically thick region at the centre of the disc. This model could also account for the behaviour of other SW Sex stars where the Balmer lines show only a shallow eclipse compared to the continuum.
Resumo:
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.
Resumo:
We report on a time-resolved study of a Ni-like transient collisionnal X-ray laser with a resolution as high as 1.9 ps The FWHM duration of the Ni-like x-ray laser pulse at 13.99 nin Ag J = 0 -->1 4d-4p line is measured to be as short as similar to2 ps at optimum conditions of pump laser irradiation. This is about four times shorter than was estimated in previous experiments. The x-ray laser signal appears in the rising edge of the continuum emission. The x-ray laser duration rises significantly when the short (heating) pulse duration is increased and when doubling the peak-to-peak delay of the two irradiation pulses, It does not change when the short pulse energy is increased. The results presented are the first direct measurements of the temporal profile of the x-ray laser output at a high resolution.
Resumo:
The effect of varying process parameters on atmospheric plasma characteristics and properties of nanometre thick siloxane coatings is investigated in a reel-to-reel deposition process. Varying plasma operation modes were observed with increasing applied power for helium and helium/oxygen plasmas. The electrical and optical behaviour of the dielectric barrier discharge were determined from current/voltage, emission spectroscopy and time resolved light emission measurements. As applied power increased, multiple discharge events occurred, producing a uniform multi-peak pseudoglow discharge, resulting in an increase in the discharge gas temperature. The effects of different operating modes on coating oxidation and growth rates were examined by injecting hexamethyldisiloxane liquid precursor into the chamber under varying operating conditions. A quenching effect on the plasma was observed, causing a decrease in plasma input power and emission intensity. Siloxane coatings deposited in helium plasmas had a higher organic component and higher growth rates than those deposited in helium/oxygen plasmas.
Pulsating or not? A search for hidden pulsations below the red edge of the ZZ Ceti instability strip
Resumo:
The location of the red edge of the ZZ Ceti instability strip is defined observationally as being the lowest temperature for which a white dwarf with a H-rich atmosphere (DA) is known to exhibit periodic brightness variations. Whether this cut-off in flux variations is actually due to a cessation of pulsation or merely due to the attenuation of any variations by the convection zone, rendering them invisible, is not clear. The latter is a theoretical possibility because with decreasing effective temperature, the emergent flux variations become an ever smaller fraction of the amplitude of the flux variations in the interior. In contrast to the flux variations, the visibility of the velocity variations associated with the pulsations is not thought to be similarly affected. Thus, models imply that were it still pulsating, a white dwarf just below the observed red edge should show velocity variations. In order to test this possibility, we used time-resolved spectra of three DA white dwarfs that do not show photometric variability, but which have derived temperatures only slightly lower than the coolest ZZ Ceti variables. We find that none of our three targets show significant periodic velocity variations, and set 95% confidence limits on amplitudes of 3.0, 5.2, and 8.8 km s(-1). Thus, for two out of our three objects, we can rule out velocity variations as large as 5.4 km s(-1) observed for the strongest mode in the cool white dwarf pulsator ZZ Psc. In order to verify our procedures, we also examined similar data of a known ZZ Ceti, HL Tau 76. Applying external information from the light curve, we detect significant velocity variations for this object with amplitudes of up to 4 km s(-1). Our results suggest that substantial numbers of pulsators having large velocity amplitudes do not exist below the observed photometric red edge and that the latter probably reflects a real termination of pulsations.
Resumo:
Resonance Raman (RR) spectroscopy has been used to probe the interaction between dipyridophenazine (dppz) complexes of ruthenium(II), [Ru(L)(2)(dppz)](2+) (L = 1,10-phenanthroline (1) and 2,2-bipyridyl (2)), and calf-thymus DNA. Ground electronic state RR spectra at selected probe wavelengths reveal enhancement patterns which reflect perturbation of the dppz-centered electronic transitions in the UV-vis spectra in the presence of DNA. Comparison of the RR spectra recorded of the short-lived MLCT excited states of both complexes in aqueous solution with those of the longer-lived states of the complexes in the DNA environment reveals changes to excited state modes, suggesting perturbation of electronic transitions of the dppz ligand in the excited state as a result of intercalation. The most prominent feature, at 1526 cm(-1), appears in the spectra of both 1 and 2 and is a convenient marker band for intercalation. For 1, the excited state studies have been extended to the A and A enantiomers. The marker band appears at the same frequency for both but with different relative intensities. This is interpreted as reflecting the distinctive response of the enantiomers to the chiral environment of the DNA binding sites. The results, together with some analogous data for other potentially intercalating complexes, are considered in relation to the more general application of time-resolved RR spectroscopy for investigation of intercalative interactions of photoexcited metal complexes with DNA.
Resumo:
Optical emission spectra from a low-pressure Ar plasma were studied with high spatial resolution. It has been shown that the intensity ratios of Ar lines excited through metastable levels to those excited directly from the ground state are sensitive to the shape of electron energy distribution function. From these measurements, important information on the spatial variation of plasma parameters can be obtained. (C) 1999 American Institute of Physics. [S0003-6951(99)01629-0].