76 resultados para The near-poor
Resumo:
The POINT-AGAPE collaboration is currently searching for massive compact halo objects (MACHOs) toward the Andromeda galaxy (M31). The survey aims to exploit the high inclination of the M31 disk, which causes an asymmetry in the spatial distribution of M31 MACHOs. Here, we investigate the effects of halo velocity anisotropy and flattening on the asymmetry signal using simple halo models. For a spherically symmetric and isotropic halo, we find that the underlying pixel lensing rate in far-disk M31 MACHOs is more than 5 times the rate of near-disk events. We find that the asymmetry is further increased by about 30% if the MACHOs occupy radial orbits rather than tangential orbits, but it is substantially reduced if the MACHOs lie in a flattened halo. However, even for halos with a minor- to major-axis ratio of q = 0.3, the number of M31 MACHOs in the far side outnumber those in the near side by a factor of similar to2. There is also a distance asymmetry, in that the events on the far side are typically farther from the major axis. We show that, if this positional information is exploited in addition to number counts, then the number of candidate events required to confirm asymmetry for a range of flattened and anisotropic halo models is achievable, even with significant contamination by variable stars and foreground microlensing events. For pixel lensing surveys that probe a representative portion of the M31 disk, a sample of around 50 candidates is likely to be sufficient to detect asymmetry within spherical halos, even if half the sample is contaminated, or to detect asymmetry in halos as flat as q = 0.3, provided less than a third of the sample comprises contaminants. We also argue that, provided its mass-to-light ratio is less than 100, the recently observed stellar stream around M31 is not problematic for the detection of asymmetry.
Resumo:
To assess the efficiency of different agro-environmental strategies used to reduce groundwater pollution by nitrates, transport modelling in soils and groundwater has been carried out on two withdrawal areas in an alluvial plain. In a first time, the agro-environmental model AgriFlux allowed the simulation of water and nitrates fluxes flowing to groundwater. This model was calibrated for each agro-pedological unit of the studied territory. In a second time, the application of the hydrogeological model MODFLOW-MT3D allowed the simulation of nitrate transport in groundwater for the 1980-2004 period. This soil-groundwater coupled modelling has shown that soil nature is the first factor that conditions the vulnerability to nitrates. Thus, nitrate leaching occurs preferentially under sandy soils. Efficiency of different agro-environmental operations for groundwater quality recovery was quantified. The best results are obtained by combination of (1) grassland re-installation on sandy agricultural lots located in near well protection perimeter and (2) fertilization reduction on sandy agricultural lots located in the well alimentation area upstream the near protection perimeter. On other soils, the effect of grassland on groundwater quality improvement is more limited. Nevertheless, the control of nitrate fertilisation remains essential and is justified in both near and far well protection perimeters. Modelling thus allows optimising and priorizing agro-environmental actions in alluvial agricultural zones. [Comte J.-C., Banton O., Kockmann F., Villard A., Creuzot G. (2006), Assessment of groundwater quality recovery strategies using nitrate transport modelling. Application to the Saône alluvial formations (Tournus, Saône-et-Loire), Ingénieries Eau-Agriculture-Territoires, 45, 15-28]
Resumo:
Harmonic generation from relativistically oscillating plasma surfaces formed during the interaction of high contrast lasers with solid-density targets has been shown to be an efficient source of extreme ultraviolet (XUV) and X-ray radiation. Recent work has demonstrated that the exceptional coherence properties of the driving laser can be mirrored in the emitted radiation, permitting diffraction limited performance and attosecond phase locking of the harmonic radiation. These unique properties may allow the coherent harmonic focusing (CHF) of high harmonics generated from solid density targets to intensities on the order of the Schwinger limit of 10(29) W cm(-2) with laser systems available in the near future [Phys. Rev. Lett. 93, 115002 (2004)] and thus pave the way for unique experiments exploring the nonlinear properties of vacuum on ultra-fast timescales. In this paper we investigate experimentally as well as numerically the prospect of focusing high harmonics under realistic experimental conditions and demonstrate, using particle in cell (PIC) simulations, that precise control of the wavefronts and thus the focusability of the generated harmonics is possible with pre-shaped targets.
Resumo:
Plasma mirrors are devices capable of switching very high laser powers on subpicosecond time scales with a dynamic range of 20–30 dB. A detailed study of their performance in the near-field of the laser beam is presented, a setup relevant to improving the pulse contrast of modern ultrahigh power lasers ~TW–PW!. The conditions under which high reflectivity can be achieved and focusability of the reflected beam retained are identified. At higher intensities a region of high specular reflectivity with rapidly decreasing focusability was observed, suggesting that specular reflectivity alone is not an adequate guide to the ideal range of plasma mirror operation. It was found that to achieve high reflectivity with negligible phasefront distortion of the reflected beam the inequality csDt,lLaser must be met (cs : sound speed, Dt: time from plasma formation to the peak of the pulse!. The achievable contrast enhancement is given by the ratio of plasma mirror reflectivity to cold reflectivity.
Resumo:
Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.
Resumo:
In the present study an experimental investigation of the time-averaged velocity and turbulence intensity distributions from a ship’s propeller, in “bollard pull” condition (zero speed of advance), is reported. Previous studies have focused mainly on the velocity profile of not a rotating ship propeller but a plain jet. The velocity profile of a propeller is investigated experimentally in this study.
The velocity measurements were performed in laboratory by using a Laser Doppler Anemometry (LDA). The measurements demonstrated two-peaked ridges velocity profile with a low velocity core at the centre within the near wake. The two-peaked ridges combined to be one-peaked ridge at 3.68 diameters downstream indicating the end of the zone of flow establishment. The study
provides useful information from a rotating ship’s propeller rather than a simplified plain jet to researchers investigating flow velocity generated from a propeller and probably resulting local scouring.
Resumo:
This paper is concerned with the development of digital humanities infrastructure – tools and resources which make using existing e-content easier to discover, utilise and embed in teaching and research. The past development of digital content in the humanities (in the United Kingdom) is considered with its resource-focused approach, as are current barriers facing digital humanities as a discipline. Existing impacts from e-infrastructure are discussed, based largely on the authors’ own discrete or collaborative projects. This paper argues that we need to consider further how digital resources are actually used, and the ways in which future digital resources might enable new types of research questions to be asked. It considers the potential for such enabling resources to advance digital humanities significantly in the near future.
Resumo:
Single nucleotide polymorphisms (SNPs) are predicted to supersede microsatellites as the marker of choice for population genetic studies in the near future. To date, however, very few studies have directly compared both marker systems in natural populations, particularly in non-model organisms. In the present study, we compared the utility of SNPs and microsatellites for population genetic analysis of the red seaweed Chondrus crispus (Florideophyceae). Six SNP loci yielded very different patterns of intrapopulation genetic diversity compared to those obtained using seven moderately (mean 5.2 alleles) polymorphic microsatellite loci, although Bayesian clustering analysis gave largely congruent results between the two marker classes. A weak but significant pattern of isolation-by-distance was observed across scales from a few hundred metres to approximately 200?km using the combined SNP and microsatellite data set of 13 loci. Over larger scales, however, there was little correlation between genetic divergence and geographical distance. Our findings suggest that even a moderate number of SNPs is sufficient to determine patterns of genetic diversity across natural populations, and also highlight the fact that patterns of genetic variation in seaweeds arise through a complex interplay of short- and long-term natural processes, as well as anthropogenic influence.
Resumo:
Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The literature on Social exclusion has focused attention on the processes leading to exposure to multiple disadvantage. Despite the influence this perspective has had on both academic and policy discussions, conceptual analysis has remained imprecise and empirical evidence modest. We have made use of the European Community Household Panel (ECHP) in order to examine the extent to which persistent income poverty results in multiple deprivation. Our analysis shows that only a modest proportion of the persistently poor can he characterized as being exposed to such deprivation. While persistent poverty and multiple deprivation combine to produce extremely high levels of economic strain, there is no evidence that they interact in a significant fashion. We argue that understanding deprivation is not facilitated by focusing on a cleavage between a multiply deprived minority and a comfortable majority, and we consider the policy implications of this argument.
Resumo:
The Herbig Ae/Be stars are intermediate mass pre-main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X-shooter to address this issue from a multi-wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near-infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 µm line. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Bulk paleosol samples collected from a Middle to Early Miocene moraine in the New Mountain area of the Dry Valleys, Antarctica, yielded Coleoptera exoskeletons and occasional endoskeletons showing considerable diagenetic effects along with several species of bacteria, all lodged in a dry-frozen but salt-rich horizon at shallow depth to the land surface. The till is at the older end of a chronologic sequence of glacial deposits, thought to have been deposited before the transition from wet-based to cold-based ice (similar to 15 Ma), and hence, entirely weathered in contact with the subaerial atmosphere. It is possible, though not absolutely verifiable, that the skeletons date from this early stage of emplacement having undergone modifications whenever light snowmelt occurred or salt concentrations lowered the freezing temperature to maintain water as liquid. Correlation of the Coleoptera species with cultured bacteria in the sample and the likelihood of co-habitation with Beauveria bassiani found in two adjacent, although younger paleosols, leads to new questions about the antiquity of the Coleoptera and the source of N and glucose from chitinase derived from the insects. The skeletons in the 831 section may date close to the oldest preserved chitin (Oligocene) yet found on Earth. While harsh Martian conditions make it seemingly intolerable for complex, multicellular organisms such as insects to exist in the near-surface and subaerially, life within similar cold, dry paleosol microenvironments (Cryosols) of Antarctica point to life potential for the Red Planet, especially when considering the relatively diverse microbe (bacteria and fungi) population. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The nearby A4-type star Fomalhaut hosts a debris belt in the form of an eccentric ring, which is thought to be caused by dynamical influence from a giant planet companion. In 2008, a detection of a point source inside the inner edge of the ring was reported and was interpreted as a direct image of the planet, named Fomalhaut b. The detection was made at 600-800nm, but no corresponding signatures were found in the near-infrared range, where the bulk emission of such a planet should be expected. Here, we present deep observations of Fomalhaut with Spitzer/IRAC at 4.5 µm, using a novel point-spread function subtraction technique based on angular differential imaging and Locally Optimized Combination of Images, in order to substantially improve the Spitzer contrast at small separations. The results provide more than an order ofmagnitude improvement in the upper flux limit of Fomalhaut b and exclude the possibility that any flux from a giant planet surface contributes to the observed flux at visible wavelengths. This renders any direct connection between the observed light source and the dynamically inferred giant planet highly unlikely. We discuss several possible interpretations of the total body of observations of the Fomalhaut system and find that the interpretation that best matches the available data for the observed source is scattered light from a transient or semi-transient dust cloud. © 2012 The American Astronomical Society. All rights reserved.
Resumo:
It is demonstrated that the electromagnetic (EM) transmission through a subwavelength or non-resonant aperture in a conductive screen can be dramatically enhanced by loading it with folded metallic strips exhibiting resonant properties. When illuminated by an EM plane wave these loaded apertures enable very tight, subwavelength, collimation of the EM power in the near field zone. We propose planar and quasi-planar resonant insertion geometries that should allow, for the first time, two-dimensional dual-polarization subwavelength field confinement along with ability to focus both electric and magnetic fields. The proposed technique for resonance transmission enhancement and near field confinement forms a basis for a new class of microwave near field imaging probe with subwavelength resolution capable of operating over a wide range of imaging distances (0.05–$0.25lambda$). Measurement results demonstrate the possibility of high contrast (more than 3 dB in amplitude and 40 degrees in phase) near field subwavelength imaging of 2D and 3D resonant and non-resonant metallic and dielectric targets in free space and in moderately lossy layered media.