86 resultados para The Body
Resumo:
In the digital age, the hyperspace of virtual reality systems stands out as a new spatial notion creating a parallel world to the space we live in. In this alternative realm, the body transforms into a hyperbody, and begins to follow the white rabbit. Not only in real world but also in the Matrix world. The Matrix project of Andy and Larry Wachowski started with a feature film released in 1999. However, The Matrix is not only a film (trilogy). It is a concept, a universe that brings real space and hyperspace together. It is a world represented not only in science fiction films but also in The Animatrix that includes nine animated Matrix films directed by Peter Chung, Andy Jones, Yoshiaki Kawajiri and others, four of which are written by the Wachowskis. The same universe is used in Enter the Matrix, a digital game whose script was written and directed by the brothers and a comic book, The Matrix Comics, which includes twelve different stories by artists like Neil Gaiman and Goef Darrow. The Wachowskis played an active role in the creation and realization of all these “products” of different media. The comic book came last (November 2003), however it is possible to argue that everything came out of comics – the storyboards of the original film. After all the Wachowskis have a background in comics.
In this study, I will focus on the formal analysis of the science fiction world of The Matrix - as a representation of hyperspace - in different media, feature film, animated film, digital game and comic book, focusing on diverse forms of space that come into being as a result of medium differences. To unfold the different formal characters of film, animation, game and comics, concepts and features including framing, flattening, continuity, movement, montage, sound/text, light and color will be discussed. An analysis of these products will help to open up a discussion on the relation of form, media and representation.
Resumo:
The contemporary dominance of visuality has turned our understanding of space into a mode of unidirectional experience that externalizes other sensual capacities of the body while perceiving the built environment. This affects not only architectural practice but also architectural education when an introduction to the concept of space is often challenging, especially for the students who have limited spatial and sensual training. Considering that an architectural work is not perceived as a series of retinal pictures but as a repeated multi-sensory experience, the problem definitions in the design studio need to be disengaged from the dominance of a ‘focused vision’ and be re-constructed in a holistic manner. A method to address this approach is to enable the students to refer to their own sensual experiences of the built environment as a part of their design processes. This paper focuses on a particular approach to the second year architectural design teaching which has been followed in the Department of Architecture at Izmir University of Economics for the last three years. The very first architectural project of the studio and the program, entitled ‘Sensing Spaces’, is conducted as a multi-staged design process including ‘sense games, analyses of organs and their interpretations into space’. The objectives of this four-week project are to explore the sense of space through the design of a three-dimensional assembly, to create an awareness of the significance of the senses in the design process and to experiment with re-interpreted forms of bodily parts. Hence, the students are encouraged to explore architectural space through their ‘tactile, olfactory, auditory, gustative and visual stimuli’. In this paper, based on a series of examples, architectural space is examined beyond its boundaries of structure, form and function, and spatial design is considered as an activity of re-constructing the built environment through the awareness of bodily senses.
Resumo:
Body mass has been shown to scale negatively with abundance in a wide range of habitats and ecosystems. It is believed that this relationship has important consequences for the distribution and maintenance of energy in natural communities. Some studies have shown that the relationship between body mass and abundance may be robust to major food web perturbations, fuelling the belief that natural processes may preserve the slope of this relationship and the associated cycling of energy and nutrients. Here, we use data from a long-term experimental food web manipulation to examine this issue in a semi-natural environment. Similar communities were developed in large experimental mesocosms over a six month period. Some of the mesocosms were then subjected to species removals, based on the mean strength of their trophic interactions in the communities. In treatments where the strongest interactors were removed, a community-level trophic cascade occurred. The biomass density of invertebrates increased dramatically in these communities, which led to a suppression of primary production. In spite of these widespread changes in ecosystem functioning, the slope of the relationship between body mass and abundance remained unchanged. This was the case whether average species body mass and abundance or individual organism size spectra were considered. An examination of changes in species composition before and after the experimental manipulations revealed an important mechanism for maintaining the body mass-abundance relationship. The manipulated communities all had a higher species turnover than the intact communities, with the highest turnover in communities that experienced cascading effects. As some species increased in body mass and abundance, new species filled the available size-abundance niches that were created. This maintained the overall body mass-abundance relationship and provided a stabilising structure to these experimental communities.
Resumo:
The lymphotropic and myelotropic nature of wild-type measles virus (wt-MV) is well recognized, with dendritic cells and lymphocytes expressing the MV receptor CD150 mediating systemic spread of the virus. Infection of respiratory epithelial cells has long been considered crucial for entry of MV into the body. However, the lack of detectable CD150 on these cells raises the issue of their importance in the pathogenesis of measles. This study utilized a combination of in vitro, ex vivo and in vivo model systems to characterize the susceptibility of epithelial cells to wt-MV of proven pathogenicity. Low numbers of MV-infected epithelial cells in close proximity to underlying infected lymphocytes or myeloid cells suggested infection via the basolateral side of the epithelium in the macaque model. In primary cultures of human bronchial epithelial cells, foci of MV-infected cells were only observed following infection via the basolateral cell surface. The extent of infection in primary cells was enhanced both in vitro and in ex vivo cornea rim tissue by disrupting the integrity of the cells prior to the application of virus. This demonstrated that, whilst epithelial cells may not be the primary target cells for wt-MV, areas of epithelium in which tight junctions are disrupted can become infected using high m.o.i. The low numbers of MV-infected epithelial cells observed in vivo in conjunction with the absence of infectious virus release from infected primary cell cultures suggest that epithelial cells have a peripheral role in MV transmission.
Resumo:
P>The current paper provides an overview of current knowledge on the structure and function of the eye. It describes in depth the different parts of the eye that are involved in the ocular manifestations seen in the mucopolysaccharidoses (MPS). The MPS are a group of rare inheritable lysosomal storage disorders characterized by the accumulation of glycosaminoglycans (GAGs) in cells and tissues all over the body, leading to widespread tissue and organ dysfunction. GAGs also tend to accumulate in several tissues of the eye, leading to various ocular manifestations affecting both the anterior (cornea, conjunctiva) and the posterior parts (retina, sclera, optic nerve) of the eye.
Resumo:
The localisation and distribution of 5-hydroxytryptamine (5-HT, or serotonin) and neuropeptides in the nervous system of the protoscolex of the hydatid organism Echinococcus granulosus were determined by an indirect immunofluorescence technique. Nerve-cell bodies immunoreactive for 5-HT occurred in the lateral ganglia and in association with the lateral longitudinal nerve cords. 5-HT immunostaining was also evident in the central nerve ring, in the rostellar nerves and in the nerve plexus innervating the suckers. Of the antisera used to screen the protoscolex for neuropeptide immunoreactivity (IR), immunostaining was obtained with those raised against pancreatic polypeptide (PP), peptide YY (PYY), substance P (SP), peptide histidine isoleucine (PI-II) and vasoactive intestinal peptide (VIP). The most extensive pattern of IR occurred with antisera to PP and PYY. Immunoreactive nerve elements were evident in the lateral ganglia, central nerve ring, rostellar nerves, rostellar ganglia, sucker plexus and longitudinal nerve cords. The distribution of SP-, PHI- and VIP-IRs was more restricted: SP-IR occurred in the lateral ganglia and sucker nerves, whilst PHI- and VIP-immunoreactive nerve elements were associated with the lateral longitudinal nerve cords. Protoscoleces cultured in vitro for 29 days were also examined and neuroanatomical changes noted. A greater development of the longitudinal nerve cords and their cross-connectives in the body of the worm was evident, and a group of nerve cells were seen to develop at the posterior end of the main lateral nerve cords.
Resumo:
The localization and distribution of the serotoninergic components of the nervous system in the hydatid organism, Echinococcus granulosus, were determined by immunocytochemical techniques in conjunction with confocal scanning laser microscopy (CSLM). The distribution of serotonin immunoreactivity (IR) paralleled that previously described for cholinesterase activity, although it was more widespread. Nerve cell bodies and nerve fibres immunoreactive for 5-HT were present throughout the central nervous system (CNS), occurring in the paired lateral, posterior lateral and rostellar ganglia, their connecting commissures and nerve rings in the scolex and in the ten longitudinal nerve cords that run posteriorly throughout the body of the worm. A large population of nerve cell bodies was associated with the lateral nerve cords. In the peripheral nervous system (PNS), immunoreactive nerve fibres occurred in well-developed nerve plexuses innervating the somatic musculature and the musculature of the rostellum and suckers. The genital atrium and associated reproductive ducts were richly innervated with serotoninergic nerve cell bodies and nerve fibres.
Resumo:
This is the first detailed description of the nitrergic nervous system in a fluke. In this study, the authors analysed the distribution of the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity in neuronal and nonneuronal tissues of the adult fluke Fasciola hepatica and compared this with the distribution of the musculature using tetramethylrhodamine isothiocyanate-phalloidin. To assess the correlation between the number of muscle cells in different parts of the fluke and the NADPH-d-stained cells, the nuclei were stained with Hoechst 333 42, which is specific for chromatin. The spatial relation between the NADPH-d-positive nerves and the 5-hydroxytryptamine (serotonin; 5-HT)-immunoreactive (-IR) and GYIRFamide-IR nervous elements was also examined. The methods complement each other. NADPH-d-positive staining occurs in both in neuronal tissue and nonneuronal tissue. Large, NADPH-d-stained neurones were localised in the nervous system. The oral and ventral suckers are innervated with many large NADPH-d-stained neurones. Ln addition, the NADPH-d staining reaction follows closely the muscle fibres in both the suckers, in the body, and in the ducts of the reproductive organs. The presence of NADPH-d activity along muscle fibres in F. hepatica and in other flatworms supports a possible myoinhibitory role for nitric oxide. Neuronal nitric oxide synthase in flatworms may form a novel drug target, which would facilitate the development of a novel anthelminthic. (C) 2001 Wiley-Liss, Inc.
Resumo:
Neuropeptides, biogenic amines and acetylcholine are expressed abundantly within the nervous systems of parasitic flatworms, and are particularly evident in the innervation of the musculature. Such associations have implicated the nervous system in locomotion, host attachment and reproductive co-ordination. Information on the muscle systems of parasitic flatworms is generally sparse, in particular those muscles associated with the reproductive system, intestinal tract and attachment apparatus. Also, the use of sectioned material has left description of the 3-dimensional organization of the musculature largely unrecorded. Using fluorescein isothiocyanate (FITC)-labelled phalloidin as a site-specific probe for filamentous actin, applied to whole-mount preparations of adult Fasciola hepatica and examined by confocal scanning laser microscopy, the present work reports on the organization of the major muscle systems in this trematode parasite. A highly regular array of outer circular, intermediate longitudinal and inner diagonal fibres distinguishes the body wall musculature, which is also involved in the development of both ventral and oral suckers. Circular fibres dominate the duct walls of the male and female reproductive systems, whereas the muscles of the intestinal tract have a somewhat diffuse arrangement of fibres. An understanding of the structural complexity of the muscle systems of parasitic flatworms is considered as fundamental to the interpretation of results from physiological experiments.
Resumo:
In an immunocytochemical study, using an antiserum and a monoclonal antibody specific for the amino acid, gamma-aminobutyric acid (GABA), GABA-like immunoreactivity (GLIR) has been demonstrated for the first time in parasitic flatworms. In Moniezia expansa (Cestoda), GLIR was seen in nerve nets which were closely associated with the body wall musculature and in the longitudinal nerve cords. In the liver fluke Fasciola hepatica (Trematoda), the GLIR occurred in the longitudinal nerve cords and lateral nerves in the posterior half of the worm. GLIR was also detected in subtegumental fibres in F. hepatica. The presence of GABA was verified, using high-pressure liquid chromatography coupled with fluorescence detection. The concentration of GABA (mean+/-S.D.) in M. expansa anterior region was 124.8+/-15.3 picomole/mg wet weight, while in F. hepatica it was 16.8+/-4.9 picomole/mg. Since several insecticides and anti-nematodal drugs are thought to interfere with GABA-receptors, the findings indicate that GABAergic neurotransmission may be a potential target for chemotherapy in flatworms too.
Resumo:
Human acute-phase serum amyloid A protein (A-SAA) is a major acute phase reactant, the concentration of which increases dramatically as part of the body's early response to inflammation. A-SAA is the product of two almost identical genes, SAA1 and SAA2, which are induced by the pro-inflammatory cytokines, IL-1 and IL-6. In this study, we examine the roles played by the 5'- and 3'-untranslated regions (UTRs) of the SAA2 mRNA in regulating A-SAA2 expression. SAA2 promoter-driven luciferase reporter gene constructs carrying the SAA2 5'-UTR and/or 3'-UTR were transiently transfected into the HepG2 human hepatoma cell line. After induction of chimeric mRNA with IL-1beta and IL-6, the SAA2 5'- and 3'-UTRs were both able to posttranscriptionally modify the expression of the luciferase reporter. The SAA2 5'-UTR promotes efficient translation of the chimeric luciferase transcripts, whereas the SAA2 3'-UTR shares this property and also significantly accelerates the rate of reporter mRNA degradation. Our data strongly suggest that the SAA2 5'- and 3'-UTRs each play significant independent roles in the posttranscriptional regulation of A-SAA2 protein synthesis.
Resumo:
The development of the vitellaria of Fasciola hepatica within the liver of its rat host was studied by means of whole-mount stained preparations and transmission electron microscopy, together with light and electron immunocytochemistry using an antibody to vitelline protein B, an eggshell precursor protein synthesized by F. hepatica. No vitelline cells could be identified in flukes recovered from the liver parenchyma, by any of the methods used. In contrast, follicles were present in flukes at the earliest time of recovery from the bile duct, namely, 5 weeks 3 days post-infection. The vitellaria in these flukes formed a row of small follicles on either side of the body. Development of the follicles was rapid: by 6 weeks 3 days, the vitellaria resembled those in the adult fluke and eggs were present in the uterus. Immunolabelling was confined to the shell protein globules in the vitelline cells, confirming the packaging of the eggshell protein within the shell globule clusters.
Resumo:
Although earthworms have been found to inhabit arsenic-rich soils in the U.K., the mode of arsenic detoxification is currently unknown. Biochemical analyses and subcellular localization studies have indicated that As3+-thiol complexes may be involved; however, it is not known whether arsenic is capable of inducing the expression of metallothionein (MT) in earthworms. The specific aims of this paper were (a) to detect and gain an atomic characterization of ligand complexing by X-ray absorption spectrometry (XAS), and (b) to employ a polyclonal antibody raised against an earthworm MT isoform (w-MT2) to detect and localize the metalloprotein by immunoperoxidase histochemistry in the tissues of earthworms sampled from arsenic-rich soil. Data suggested that the proportion of arsenate to sulfur-bound species varies within specific earthworm tissues. Although some arsenic appeared to be in the form of arsenobetaine, the arsenic within the chlorogogenous tissue was predominantly coordinated with S in the form of -SH groups. This suggests the presence of an As::MT complex. Indeed, MT was detectable with a distinctly localized tissue and cellular distribution. While MT was not detectable in the surface epithelium or in the body wall musculature, immunoperoxidase histochemistry identified the presence of MT in chloragocytes around blood vessels, within the typhlosolar fold, and in the peri-intestinal region. Focal immunostaining was also detectable in a cohort of cells in the intestinal wall. The results of this study support the hypothesis that arsenic induces MT expression and is sequestered by the metalloprotein in certain target cells and tissues.
Resumo:
In this study, we investigate the skin secretion of the Madagascan Tomato Frog, Dyscophus guineti, which is characterized by its peculiarly adhesive and viscous nature, with a view toward the function of the member of the Kunitz/bovine pancreatic trypsin inhibitor family (BPTI) it is known to contain. Using “shotgun” cloning of a skin secretion-derived cDNA library, we obtained the full-length sequence of the respective precursor that encodes this trypsin inhibitor. Furthermore, we demonstrated that this enzyme has inhibitory activity against trypsin, but not against thrombin, and also has no antimicrobial activity. Moreover, we confirm that it appears to be the only bioactive peptide in the skin secretion of this species. Using these observations, we attempt to posit a role for this inhibitor. In particular, we hypothesize that the trypsin inhibitor in D. guineti (and possibly other microhylid frogs) maintains the soluble state of the skin secretion during storage in the glands. Upon discharge of the secretion, the trypsin inhibitor, which occurs in low concentrations, can no longer prevent the polymerisation process of other yet unidentified skin proteins, thereby resulting in the conversion of the secretion to its final glue-like state. Thus, the major defensive value of the skin secretion appears to be mechanical, impeding ingestion through a combination of adhesion and the body inflation typical for some microhylid frogs rather than chemical through antimicrobial activity or toxicity.
Resumo:
The interest and participation in health promotion and wellness activities has expanded greatly in the past two decades. The "wellness revolution", especially in terms of diet and exercise, has been affected by both scientific findings and cultural changes. The paper examines how a particular aspect of culture, the moral meanings of health-promoting activities, contribute to the pursuit of wellness. Based on interviews with 54 self-identified wellness participants at a major university, we examine how health can be a moral discourse and the body a site for moral action. The paper suggests that wellness seekers engage in a profoundly moral discourse around health promotion, constructing a moral world of goods, bads and shoulds. Although there are some gender differences in particular wellness goals, engaging in wellness activities, independent of results, becomes seen as a good in itself. Thus, even apart from any health outcomes, the pursuit of virtue and a moral lifeis fundamentally an aspect of the pursuit of wellness. © 1994 Kluwer Academic Publishers.