82 resultados para Th1 Cells -- secretion
Resumo:
Skin secretions from Australian frogs of the genus Litoria have been extensively studied for many years and are known to contain a large array of antimicrobial peptides that often bear their specific names — caerins (L. caerulea), aureins (L. aurea), citropins (L. citropa) and maculatins (L. genimaculata) — and each group displays distinct primary structural attributes. During a systematic transcriptome cloning study using a cDNA library derived from skin secretion of L. aurea, a series of identical clones were identified that encoded a novel 25-mer antimicrobial peptide that displayed 92% structural identity with caerin 1.12 from L. caerulea, differing in amino acid sequence at only two positions — Arg for Gly at position 7 and Leu amide for Ser amide at the C-terminus. The novel peptide had conserved Pro residues at positions 15 and 19 that flank a flexible hinge region which previous studies have suggested are important for effective orientation of the two alpha-helices within the bacterial membrane resulting in lysis of cells. As the two substitutions in the novel peptide serve to increase both positive charge and hydrophobicity, we synthesised a replicate and determined its minimal inhibitory concentration (MIC) against Gram positive Staphylococcus aureus and Gram negative Escherichia coli. The MICs for these organisms were 3 µM and 4 µM, respectively, indicating a high potency and haemolysis was
Resumo:
Complex cell signal transduction mechanisms regulate intestinal epithelial shape, polarity, motility, organelles, cell membrane components as well as physical and mechanical properties to influence alimentary digestion, absorption, secretion, detoxification and fluid balance. Interactions between the epithelial cells and adjacent mesenchyme are central to intestinal homeostasis although the key regulatory molecules of specific differentiation steps remain unclear. Isolation and primary culture of heterotypic murine intestinal cells provides a model system for elucidation of essential molecular cross-talk between epithelium and mesenchyme that may provide several biological and practical advantages over transformed cell lines. An in vitro primary culture system for neonatal rat or mouse intestinal cells has been established that forms monolayers, expresses intestine-specific epithelial features including intestinal brush borders and appropriate hydrolase enzymes. Our studies confirm the promise of this method which may advance our understanding of heterotypic cellular interactions implicated in intestinal function and may provide important insights into the pathobiology of disease.
Cytopathogenesis of Sendai virus in well-differentiated primary pediatric bronchial epithelial cells
Resumo:
Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.
Effects of nateglinide on the secretion of glycated insulin and glucose tolerance in type 2 diabetes
Resumo:
Aims: Glycation of insulin has been demonstrated within pancreatic beta-cells and the resulting impaired bioactivity may contribute to insulin resistance in diabetes. We used a novel radioimmunoassay to evaluate the effect of nateglinide on plasma concentrations of glycated insulin and glucose tolerance in type 2 diabetes. Methods. Ten patients (5 M/5 F, age 57.8 +/- 1.9 years, HbA(1c), 7.6 +/- 0.5%,, fasting plasma glucose 9.4 +/- 1.2 mmol/l, creatinine 81.6 +/- 4.5 mumol/l) received oral nateglinide 120 mg or placebo, 10 min prior to 75 g oral glucose in a random, single blind, crossover design, 1 week apart. Blood samples were taken for glycated insulin, glucose, insulin and C-peptide over 225 min. Results: Plasma glucose and glycated insulin responses were reduced by 9% (P = 0.005) and 38% (P = 0.047), respectively, following nateglinide compared with placebo. Corresponding AUC measures for insulin and C-peptide were enhanced by 36% (P = 0.005) and 25% (P = 0.007) by nateglinide. Conclusions: Glycated insulin in type 2 diabetes is reduced in response to the insulin secretagogue nateglinide, resulting in preferential release of native insulin. Since glycated insulin exhibits impaired biological activity, reduced glycated insulin release may contribute to the anti hyperglycaemic action of nateglinide. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Endoplasmic reticulum protein 29 (ERp29) is a novel endoplasmic reticulum ( ER) secretion factor that facilitates the transport of secretory proteins in the early secretory pathway. Recently, it was found to be overexpressed in several cancers; however, little is known regarding its function in breast cancer progression. In this study, we show that the expression of ERp29 was reduced with tumor progression in clinical specimens of breast cancer, and that overexpression of ERp29 resulted in G(0)/G(1) arrest and inhibited cell proliferation in MDA-MB-231 cells. Importantly, overexpression of ERp29 in MDA-MB-231 cells led to a phenotypic change and mesenchymal-epithelial transition (MET) characterized by cytoskeletal reorganization with loss of stress fibers, reduction of fibronectin (FN), reactivation of epithelial cell marker E-cadherin and loss of mesenchymal cell marker vimentin. Knockdown of ERp29 by shRNA in MCF-7 cells reduced E-cadherin, but increased vimentin expression. Furthermore, ERp29 overexpression in MDA-MB-231 and SKBr3 cells decreased cell migration/invasion and reduced cell transformation, whereas silencing of ERp29 in MCF-7 cells enhanced cell aggressive behavior. Significantly, expression of ERp29 in MDA-MB-231 cells suppressed tumor formation in nude mice by repressing the cell proliferative index (Ki-67 positivity). Transcriptional profiling analysis showed that ERp29 acts as a central regulator by upregulating a group of genes with tumor suppressive function, for example, E-cadherin (CDH1), cyclin-dependent kinase inhibitor (CDKN2B) and spleen tyrosine kinase (SYK), and by downregulating a group of genes that regulate cell proliferation (eg, FN, epidermal growth factor receptor ( EGFR) and plasminogen activator receptor ( uPAR)). It is noteworthy that ERp29 significantly attenuated the overall ERK cascade, whereas the ratio of p-ERK1 to p-ERK2 was highly increased. Taken together, our results showed that ERp29 is a novel regulator leading to cell growth arrest and cell transition from a proliferative to a quiescent state, and reprogramming molecular portraits to suppress the tumor growth of MDA-MB-231 breast cancer cells. Laboratory Investigation (2009) 89, 1229-1242; doi: 10.1038/labinvest.2009.87; published online 21 September 2009
Resumo:
Background Human respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs). Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.
Resumo:
Cyclooxygenase-2 (Cox-2) and Apo J/clusterin are involved in inflammatory resolution and have each been reported to inhibit NF-?B signalling. Using a well-validated rat pheochromocytoma (PC12) cell culture model of Cox-2 over-expression the current study investigated inter-dependence between Cox-2 and clusterin with respect to induction of expression and impact on NF-?B signalling. Both gene expression and immunoblot analysis confirmed that intracellular and secreted levels of clusterin were elevated in Cox-2 over-expressing cells (PCXII). Clusterin expression was increased in control (PCMT) cells in a time- and dose-dependent manner by 15-deoxy-? 12,14-prostaglandin J 2 (15d-PGJ 2), but not PGE 2, and inhibited in PCXII cells by pharmacological Cox inhibition. In PCXII cells, inhibition of two transcription factors known to be activated by 15d-PGJ 2, heat shock factor 1 (HSF-1) and peroxisome proliferator activated receptor (PPAR)?, by transcription factor oligonucleotide decoy and antagonist (GW9662) treatment, respectively, reduced clusterin expression. While PCXII cells exhibited reduced TNF-a-induced cell surface ICAM-1 expression, IkB phosphorylation and degradation were similar to control cells. With respect to the impact of Cox-2-dependent clusterin upregulation on NF-?B signalling, basal levels of I?B were similar in control and PCXII cells, and no evidence for a physical association between clusterin and phospho-I?B was obtained. Moreover, while PCXII cells exhibited reduced NF-?B transcriptional activity, this was not restored by clusterin knock-down. These results indicate that Cox-2 induces clusterin in a 15d-PGJ 2-dependent manner, and via activation of HSF-1 and PPAR?. However, the results do not support a model whereby Cox-2/15d-PGJ 2-dependent inhibition of NF-?B signalling involves clusterin.
Resumo:
BACKGROUND:
Acid-sensing ion channels (ASIC) are a family of acid-activated ligand-gated cation channels. As tissue acidosis is a feature of inflammatory conditions, such as allergic rhinitis (AR), we investigated the expression and function of these channels in AR.
OBJECTIVES:
The aim of the study was to assess expression and function of ASIC channels in the nasal mucosa of control and AR subjects.
METHODS:
Immunohistochemical localization of ASIC receptors and functional responses to lactic acid application were investigated. In vitro studies on cultured epithelial cells were performed to assess underlying mechanisms of ASIC function.
RESULTS:
Lactic acid at pH 7.03 induced a significant rise in nasal fluid secretion that was inhibited by pre-treatment with the ASIC inhibitor amiloride in AR subjects (n = 19). Quantitative PCR on cDNA isolated from nasal biopsies from control and AR subjects demonstrated that ASIC-1 was equally expressed in both populations, but ASIC-3 was significantly more highly expressed in AR (P < 0.02). Immunohistochemistry confirmed significantly higher ASIC-3 protein expression on nasal epithelial cells in AR patients than controls (P < 0.01). Immunoreactivity for EPO+ eosinophils in both nasal epithelium and submucosa was more prominent in AR compared with controls. A mechanism of induction of ASIC-3 expression relevant to AR was suggested by the finding that eosinophil peroxidase (EPO), acting via ERK1/2, induced the expression of ASIC-3 in epithelial cells. Furthermore, using a quantitative functional measure of epithelial cell secretory function in vitro, EPO increased the air-surface liquid depth via an ASIC-dependent chloride secretory pathway.
CONCLUSIONS:
This data suggests a possible mechanism for the observed association of eosinophils and rhinorrhoea in AR and is manifested through enhanced ASIC-3 expression.
Resumo:
Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R(-/-) mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R(-/-) mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.
Resumo:
For in vitro studies of airway pathophysiology, primary epithelial cells have many advantages over immortalised cell lines. Nasal epithelial cells are easier to obtain than bronchial epithelial cells and can be used as an alternative for in vitro studies. Our objective was to compare nasal and bronchial epithelial cells from subjects with COPD to establish if these cells respond similarly to pro-inflammatory stimuli. Cell cultures from paired nasal and bronchial brushings (21 subjects) were incubated with cigarette smoke extract (CSE) prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide. IL-6 and IL-8 were measured by ELISA and Toll-like receptor 4 (TLR-4) message and expression by RT-PCR and FACS respectively. IL-8 release correlated significantly between the two cell types. IL-6 secretion was significantly less from bronchial compared to nasal epithelial cells and secreted concentrations did not correlate. A 4 h CSE incubation was immunosuppressive for both nasal and bronchial cells, however prolonged incubation for 24 h was pro-inflammatory solely for the nasal cells. CSE reduced TLR-4 expression in bronchial cells only after 24 h, and was without effect on mRNA expression. In subjects with COPD, nasal epithelial cells cannot substitute for in vitro bronchial epithelial cells in airway inflammation studies. © 2012 Comer et al.
MODULATORY ACTION OF HELICOBACTER-PYLORI ON HISTAMINE-RELEASE FROM MAST-CELLS AND BASOPHILS IN-VITRO
Resumo:
Helicobacter pylori is important in the aetiology of peptic ulceration. Despite inducing an inflammatory response in the mucosa, the organism persists, suggesting that it has efficient protective mechanisms. Some bacterial and viral products modulate histamine secretion from inflammatory cells. Therefore, this study examined the modulatory effects of H. pylori preparations on histamine release from rat peritoneal mast cells and human basophils. Eleven clinical isolates of H. pylori were prepared in different ways: as whole washed bacteria, washed sonicated bacteria, and formalin-killed bacteria, and as outer-membrane and lipopolysaccharide (LPS) extracts. Histamine release from mast cells or basophils was not elicited by any of these bacterial preparations alone. However, when mixed with various secretory stimulants, the bacterial preparations caused inhibition of histamine release from rat mast cells (calcium ionophore A23187, compound 48/80, concanavalin A, anti-rat IgE) and human basophils (A23187, N-formyl Met-Leu-Phe). The degree of inhibition ranged from 48 % to 97 %. These results indicate that H. pylori exerts an inhibitory effect on cells of the immune system that contributes to its persistence within the gastric mucosa.
Resumo:
The present study provides evidence for a number of calcium pools important in histamine secretion from the mast cell. Firstly, calcium loosely bound to the cell membrane, and in rapid equilibrium with the extracellular environment, may be utilized for histamine release induced by most secretagogues. Secondly, all inducers are able to mobilize deeply buried or internal stores of calcium to initiate exocytosis. Finally, calcium bound to regulatory sites in the membrane may modulate the secretory process, Removal of calcium from the latter sites by brief treatment with chelating agents markedly enhances the secretory response in the absence of extracellular calcium, probably by facilitating the mobilization of bound stores of the ion, Saturation of these sites in the presence of excess calcium inhibits the release process and may restrict influx of the cation.
Resumo:
Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.
Resumo:
GM-CSF is a potent proinflammatory cytokine that plays a pathogenic role in the CNS inflammatory disease experimental autoimmune encephalomyelitis. As IL-27 alleviates experimental autoimmune encephalomyelitis, we hypothesized that IL-27 suppresses GM-CSF expression by T cells. We found that IL-27 suppressed GM-CSF expression in CD4+ and CD8+ T cells in splenocyte and purified T cell cultures. IL-27 suppressed GM-CSF in Th1, but not Th17, cells. IL-27 also suppressed GM-CSF expression by human T cells in nonpolarized and Th1- but not Th17-polarized PBMC cultures. In vivo, IL-27p28 deficiency resulted in increased GM-CSF expression by CNS-infiltrating T cells during Toxoplasma gondii infection. Although in vitro suppression of GM-CSF by IL-27 was independent of IL-2 suppression, IL-10 upregulation, or SOCS3 signaling, we observed that IL-27-driven suppression of GM-CSF was STAT1 dependent. Our findings demonstrate that IL-27 is a robust negative regulator of GM-CSF expression in T cells, which likely inhibits T cell pathogenicity in CNS inflammation.
Resumo:
Dissolving polymeric microneedle arrays formulated to contain recombinant CN54 HIVgp140 and the TLR4 agonist adjuvant MPLA were assessed for their ability to elicit antigen-specific immunity. Using this novel microneedle system we successfully primed antigen-specific responses that were further boosted by an intranasal mucosal inoculation to elicit significant antigen-specific immunity. This prime-boost modality generated similar serum and mucosal gp140-specific IgG levels to the adjuvanted and systemic subcutaneous inoculations. While the microneedle primed groups demonstrated a balanced Th1/Th2 profile, strong Th2 polarization was observed in the subcutaneous inoculation group, likely due to the high level of IL-5 secretion from cells in this group. Significantly, the animals that received a microneedle prime and intranasal boost regimen elicited a high level IgA response in both the serum and mucosa, which was greatly enhanced over the subcutaneous group. The splenocytes from this inoculation group secreted moderate levels of IL-5 and IL-10 as well as high amounts of IL-2, cytokines known to act in synergy to induce IgA. This work opens up the possibility for microneedle-based HIV vaccination strategies that, once fully developed, will greatly reduce risk for vaccinators and patients, with those in the developing world set to benefit most.