50 resultados para Systems and data security


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Family Model – A transgenerational approach to mental health in families This workshop will provide an overview on The Family Model (TFM) and its use in promoting and facilitating a trans­generational family focus in Mental Health services, over the past 10­ - 15 years. Each of the speakers will address a different perspective, including service user/consumer, clinical practice, education & training, research and policy. Adrian Falkov (chair) will provide an overview of TFM to set the scene and a ‘policy to practice’ perspective, based on use of TFM in Australia. Author: Heide Lloyd. The Family Model ­ A personal (consumer/patient) perspective | United Kingdom Heide will provide a description of her experiences as a child, adult, parent & grandparent, using TFM as the structure around which to ‘weave’ her story and demonstrate how TFM has assisted her in understanding the impact of symptoms on her & family and how she has used it in her management of symptoms and recovery (personal perspective). The Family Model ­ Education & training perspective ­ Marie Diggins | United Kingdom PhD Bente Weimand | Norway Authors: ­ Marie Diggins | United Kingdom PhD Bente Weimand | Norway This combined (UK & Norwegian) presentation will cover historical background to TFM and its use in eLearning (the Social Care Institute for Excellence)and a number of other UK initiatives, together with a description of the postgraduate masters course at the University Oslo/Akershus, using TFM. The Family Model ­ A research perspective PhD Anne Grant | Northern Ireland Author: PhD Anne Grant | Ireland Anne Grant will describe how she used TFM as the theoretical framework for her PhD looking at family focused (nursing) practice in Ireland. The Family Model ­ A service systems perspective ­ Mary Donaghy | Northern Ireland Authors: PhD Adrian Falkov | Australia ­ Mary Donaghy | N Ireland Mary Donaghy will discuss how TFM has been used to support & facilitate a cross service ‘whole of system’ change program in Belfast (NI) to achieve improved family focused practice. She will demonstrate its utility in achieving a broader approach to service design, delivery and evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fully homomorphic encryption (FHE) scheme is envisioned as a key cryptographic tool in building a secure and reliable cloud computing environment, as it allows arbitrary evaluation of a ciphertext without revealing the plaintext. However, existing FHE implementations remain impractical due to very high time and resource costs. To the authors’ knowledge, this paper presents the first hardware implementation of a full encryption primitive for FHE over the integers using FPGA technology. A large-integer multiplier architecture utilising Integer-FFT multiplication is proposed, and a large-integer Barrett modular reduction module is designed incorporating the proposed multiplier. The encryption primitive used in the integer-based FHE scheme is designed employing the proposed multiplier and modular reduction modules. The designs are verified using the Xilinx Virtex-7 FPGA platform. Experimental results show that a speed improvement factor of up to 44 is achievable for the hardware implementation of the FHE encryption scheme when compared to its corresponding software implementation. Moreover, performance analysis shows further speed improvements of the integer-based FHE encryption primitives may still be possible, for example through further optimisations or by targeting an ASIC platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homomorphic encryption offers potential for secure cloud computing. However due to the complexity of homomorphic encryption schemes, performance of implemented schemes to date have been unpractical. This work investigates the use of hardware, specifically Field Programmable Gate Array (FPGA) technology, for implementing the building blocks involved in somewhat and fully homomorphic encryption schemes in order to assess the practicality of such schemes. We concentrate on the selection of a suitable multiplication algorithm and hardware architecture for large integer multiplication, one of the main bottlenecks in many homomorphic encryption schemes. We focus on the encryption step of an integer-based fully homomorphic encryption (FHE) scheme. We target the DSP48E1 slices available on Xilinx Virtex 7 FPGAs to ascertain whether the large integer multiplier within the encryption step of a FHE scheme could fit on a single FPGA device. We find that, for toy size parameters for the FHE encryption step, the large integer multiplier fits comfortably within the DSP48E1 slices, greatly improving the practicality of the encryption step compared to a software implementation. As multiplication is an important operation in other FHE schemes, a hardware implementation using this multiplier could also be used to improve performance of these schemes.