73 resultados para Surface active agents
Resumo:
The effects of the novel benzimidazole, triclabendazole (Fasinex, Ciba-Geigy), in its active sulphoxide metabolite form (TCBZ-SX), on the tegumental surface of Fasciola hepatica has been examined in vitro. The tegument of adult flukes incubated in TCBZ-SX (50 mug/ml) appeared swollen and blebbed after only 6 h. In addition, progressive spine loss at the oral cone was evident following 12 h treatment. After 24 h, the tegumental syncytium and spines had completely sloughed away, leaving an exposed basal lamina and empty spine sockets. Juvenile flukes (3 weeks old) also demonstrated tegumental alterations after treatment with TCBZ-SX (20 mug/ml). The syncytium became extremely roughened and corrugated on both dorsal and ventral surfaces after only 3 h. Following 6- and 9-h incubations, there were many deep furrows, which were especially pronounced on the ventral surface, and by 18 h, the juvenile tegument was severely disrupted, especially on the ventral surface. In all cases, the effects were more marked than in the previous incubation periods. The results confirm the potent activity of triclabendazole against F. hepatica and suggest that the tegument of adult and juvenile flukes may be a target organ for this important fasciolicide.
Resumo:
Antimicrobial peptides (APs) are important host weapons against infections. Nearly all APs are cationic and their microbicidal action is initiated through interactions with the anionic bacterial surface. It is known that pathogens have developed countermeasures to resist these agents by reducing the negative charge of membranes, by active efflux and by proteolytic degradation. Here we uncover a new strategy of resistance based on the neutralization of the bactericidal activity of APs by anionic bacterial capsule polysaccharide (CPS). Purified CPSs from Klebsiella pneumoniae K2, Streptococcus pneumoniae serotype 3 and Pseudomonas aeruginosa increased the resistance to polymyxin B of an unencapsulated K. pneumoniae mutant. Furthermore, these CPSs increased the MICs of polymyxin B and human neutrophil alpha-defensin 1 (HNP-1) for unencapsulated K. pneumoniae, Escherichia coli and P. aeruginosa PAO1. Polymyxin B or HNP-1 released CPS from capsulated K. pneumoniae, S. pneumoniae serotype 3 and P. aeruginosa overexpressing CPS. Moreover, this material also reduced the bactericidal activity of APs. We postulate that APs may trigger in vivo the release of CPS, which in turn will protect bacteria against APs. We found that anionic CPSs, but not cationic or uncharged ones, blocked the bactericidal activity of APs by binding them, thereby reducing the amount of peptides reaching the bacterial surface. Supporting this, polycations inhibited such interaction and the bactericidal activity was restored. We postulate that trapping of APs by anionic CPSs is an additional selective virulence trait of these molecules, which could be considered as bacterial decoys for APs.
Resumo:
A commercially available coconut-shell-derived active carbon was oxidized with nitric acid, and both the original and oxidized active carbons were treated with ammonia at 1073 K to incorporate nitrogen functional groups into the carbon. An active carbon with very high nitrogen content (similar to9.4 wt % daf) was also prepared from a nitrogen-rich precursor, polyacrylonitrile (PAN). These nitrogen-rich carbons had points of zero charge (pH(pzc)) similar to H-type active carbons. X-ray absorption near-edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) were used to characterize the nitrogen functional groups in the carbons. The nitrogen functional groups present on the carbon surface were pyridinic, pyrrolic (or indolic), and pyridonic structures. The adsorption of transition metal cations Cd2+, Ni2+, and Cu2+ from aqueous solution on the suite of active carbons showed that adsorption was markedly higher for carbons with nitrogen functional groups present on the surface than for carbons with similar pH(pzc) values. In contrast, the adsorption characteristics of Ca2+ from aqueous solution were similar for all the carbons studied. Flow microcalorimetry (FMC) studies showed that the enthalpies of adsorption of Cd2+(aq) on the active carbons with high nitrogen contents were much higher than for nitric acid oxidized carbons studied previously, which also had enhanced adsorption characteristics for metal ion species. The enthalpies of adsorption of Cu2+ were similar to those obtained for Cd2+ for specific active carbons. The nitrogen functional groups in the carbons act as surface coordination sites for the adsorption of transition metal ions from aqueous solution. The adsorption characteristics of these carbons are compared with those of oxidized carbons.
Resumo:
Stellar activity, such as starspots, can induce radial velocity (RV) variations that can mask or even mimic the RV signature of orbiting exoplanets. For this reason RV exoplanet surveys have been unsuccessful when searching for planets around young, active stars and are therefore failing to explore an important regime which can help to reveal how planets form and migrate. This paper describes a new technique to remove spot signatures from the stellar line-profiles of moderately rotating, active stars (v sin i ranging from 10 to 50 km s(-1)). By doing so it allows planetary RV signals to be uncovered. We used simulated models of a G5V type star with differing dark spots on its surface along with archive data of the known active star HD 49933 to validate our method. The results showed that starspots could be effectively cleaned from the line-profiles so that the stellar RV jitter was reduced by more than 80 per cent. Applying this procedure to the same models and HD 49933 data, but with fake planets injected, enabled the effective removal of starspots so that Jupiter mass planets on short orbital periods were successfully recovered. These results show that this approach can be useful in the search for hot-Jupiter planets that orbit around young, active stars with a v sin i of similar to 10-50 km/s.
Resumo:
The adsorption and electrooxidation of CO at a Ru(0001) electrode in perchloric acid solution have been investigated as a function of temperature, potential and time using in situ FTIR spectroscopy. This builds upon and extends previous work on the same system carried out at room temperature. As was observed at room temperature, both linear (CO) and 3-fold-hollow (CO) binding CO adsorbates (bands at 2000-2045 cm and 1768-1805 cm, respectively) were detected on the Ru(0001) electrode at 10°C and 50°C. However, the temperature of the Ru(0001) electrode had a significant effect upon the structure and behavior of the CO adlayer. At 10°C, the in-situ FTIR data showed that the adsorbed CO species still remain in rather compact islands up to ca. 1100 mV vs Ag/AgCl as the CO oxidation reaction proceeds, with oxidation occurring only at the boundaries between the CO and active surface oxide/hydroxide domains. However, the IR data collected at 50°C strongly suggest that the adsorbed CO species are present as relatively looser and weaker structures, which are more easily electro-oxidized. The temperature-, potential-, and coverage-dependent relaxation and compression of the CO adlayer at low coverages are also discussed.
Resumo:
In this study, low loading platinum nanoparticles (Pt NPs) have been highly dispersed on reduced graphene oxide-supported WC nanocrystallites (Pt-WC/RGO) via program-controlled reduction-carburization technique and microwave-assisted method. The scanning electron microscopy and transmission electron microscopy results show that WC nanocrystallites are homogeneously decorated on RGO, and Pt NPs with a size of ca. 3 nm are dispersed on both RGO and WC. The prepared Pt-WC/RGO is used as an electrocatalyst for methanol oxidation reaction (MOR). Compared with the Pt/RGO, commercial carbon-supported Pt (Pt/C) and PtRu alloy (PtRu/C) electrocatalysts, the Pt-WC/RGO composites demonstrate higher electrochemical active surface area and excellent electrocatalytic activity toward the methanol oxidation, such as better tolerance toward CO, higher peak current density, lower onset potential and long-term stability, which could be attributed to the characterized RGO support, highly dispersed Pt NPs and WC nanocrystallites and the valid synergistic effect resulted from the increased interface between WC and Pt. The present work proves that Pt-WC/RGO composites could be a promising alternative catalyst for direct methanol fuel cells where WC plays the important role as a functional additive in preparing Pt-based catalysts because of its CO tolerance and lower price.
Resumo:
First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.
Resumo:
Oxidation of NADH in the mitochondrial matrix of aerobic cells is catalysed by mitochondrial complex I. The regulation of this mitochondrial enzyme is not completely understood. An interesting characteristic of complex I from some organisms is the ability to adopt two distinct states: the so-called catalytically active (A) and the de-active, dormant state (D). The A-form in situ can undergo de-activation when the activity of the respiratory chain is limited (i.e. in the absence of oxygen). The mechanisms and driving force behind the A/D transition of the enzyme are currently unknown, but several subunits are most likely involved in the conformational rearrangements: the accessory subunit 39 kDa (NDUFA9) and the mitochondrially encoded subunits, ND3 and ND1. These three subunits are located in the region of the quinone binding site. The A/D transition could represent an intrinsic mechanism which provides a fast response of the mitochondrial respiratory chain to oxygen deprivation. The physiological role of the accumulation of the D-form in anoxia is most probably to protect mitochondria from ROS generation due to the rapid burst of respiration following reoxygenation. The de-activation rate varies in different tissues and can be modulated by the temperature, the presence of free fatty acids and divalent cations, the NAD/NADH ratio in the matrix, the presence of nitric oxide and oxygen availability. Cysteine-39 of the ND3 subunit, exposed in the D-form, is susceptible to covalent modification by nitrosothiols, ROS and RNS. The D-form in situ could react with natural effectors in mitochondria or with pharmacological agents. Therefore the modulation of the re-activation rate of complex I could be a way to ameliorate the ischaemia/reperfusion damage. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.
Resumo:
We present the results of a search for the reactivation of active asteroid 176P/LINEAR during its 2011 perihelion passage using deep optical observations obtained before, during, and after that perihelion passage. Deep composite images of 176P constructed from data obtained between 2011 June and 2011 December show no visible signs of activity, while photometric measurements of the object during this period also show no significant brightness enhancements similar to that observed for 176P between 2005 November and 2005 December when it was previously observed to be active. An azimuthal search for dust emission likewise reveals no evidence for directed emission (i.e., a tail, as was previously observed for 176P), while a one-dimensional surface brightness profile analysis shows no indication of a spherically symmetric coma at any time in 2011. We conclude that 176P did not in fact exhibit activity in 2011, at least not on the level on which it exhibited activity in 2005, and suggest that this could be due to the devolatization or mantling of the active site responsible for its activity in 2005.
Resumo:
Context. Bright points (BPs) are small-scale, magnetic features ubiquitous across the solar surface. Previously, we have observed and noted their properties for quiet Sun regions. Here, we determine the dynamic properties of BPs using simultaneous quiet Sun and active region data.
Aims. The aim of this paper is to compare the properties of BPs in both active and quiet Sun regions and to determine any difference in the dynamics and general properties of BPs as a result of the varying magnetic activity within these two regions.
Methods. High spatial and temporal resolution G-band observations of active region AR11372 were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. Three subfields of varying polarity and magnetic flux density were selected with the aid of magnetograms obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Bright points within these subfields were subsequently tracked and analysed.
Results. It is found that BPs within active regions display attenuated velocity distributions with an average horizontal velocity of ~0.6 km s-1, compared to the quiet region which had an average velocity of 0.9 km s-1. Active region BPs are also ~21% larger than quiet region BPs and have longer average lifetimes (~132 s) than their quiet region counterparts (88 s). No preferential flow directions are observed within the active region subfields. The diffusion index (γ) is estimated at ~1.2 for the three regions.
Conclusions. We confirm that the dynamic properties of BPs arise predominately from convective motions. The presence of stronger field strengths within active regions is the likely reason behind the varying properties observed. We believe that larger amounts of magnetic flux will attenuate BP velocities by a combination of restricting motion within the intergranular lanes and by increasing the number of stagnation points produced by inhibited convection. Larger BPs are found in regions of higher magnetic flux density and we believe that lifetimes increase in active regions as the magnetic flux stabilises the BPs.
Resumo:
This paper investigates a series of dendrons based on the Newkome dendritic scaffold that displays a naturally occurring polyamine (spermine) on their surface. These dendrons have previously been shown to interact with DNA in a generation dependent manner with the more highly branched dendrons exhibiting a strong multivalency effect for the spermine surface groups. In this paper, we investigate the ability of these dendrons to transfect DNA into cells (human breast carcinoma cells, MDA-MB-231, and murine myoblast cells, C2C12) as determined by the luciferase assay. Although the dendrons are unable to transfect DNA in their own right, they are capable of delivering DNA in vitro when administered with chloroquine, which assists with escape from endocytic vesicles. The cytotoxicity of the dendrons was determined using the XTT assay, and it was shown that the dendrons were nontoxic either alone or in the presence of DNA. However, when administered with DNA and chloroquine, the most highly branched dendron did exhibit some cytotoxicity. This paper elucidates the relationship between in vitro transfection efficiency and toxicity. While transfection efficiencies are modest, the low toxicity of the dendrons, both in their own right, and in the presence of DNA, provides encouragement that this type of building block, which has a relatively high affinity for DNA, will provide a useful starting point for the further synthetic development of more effective gene transfection agents.
Resumo:
The effects of high-pressure processing (HPP) in conjunction with an essential oil-based active packaging on the surface of ready-to-eat (RTE) chicken breast were investigated as post-processing listericidal treatment. Three different treatments were used, and all samples were vacuum packed: (i) HPP at 500. MPa for 1. min (control), (ii) active packaging based on coriander essential oil, and (iii) active packaging and HPP. When applied individually, active packaging and pressurisation delayed the growth of Listeria monocytogenes. The combination of HPP and active packaging resulted in a synergistic effect reducing the counts of the pathogen below the detection limit throughout 60. days storage at 4. °C. However, when these samples were stored at 8. °C, growth did occur, but again a delay in growth was observed. The effects on colour and lipid oxidation were also studied during storage and were not significantly affected by the treatments. Active packaging followed by in-package pressure treatment could be a useful approach to reduce the risk of L. monocytogenes in cooked chicken without impairing its quality. Industrial relevance: Ready-to-eat products are of great economic importance to the industry. However, they have been implicated in several outbreaks of listeriosis. Therefore, effective ways to reduce the risk from this pathogenic microorganism can be very attractive for manufacturers. This study showed that the use of active packaging followed by HPP can enhance the listericidal efficiency of the treatment while using lower pressure levels, and thus having limited effects on colour and lipid oxidation of RTE chicken breast.
Resumo:
Large, thin (50 mu m) dry polymer sheets containing numerous surface-enhanced Raman spectroscopy (SERS) active Ag nanopartide aggregates have been prepared by drying aqueous mixtures of hydroxyethylcelloulose (HEC) and preaggregated Ag colloid in 10 x 10 cm molds. In these dry films, the particle aggregates are protected from the environment during storage and are easy to handle; for example, they can be cut to size with scissors. When in use, the highly swellable HEC polymer allowed the films to rapidly absorb aqueous analyte solutions while simultaneously releasing the Ag nanoparticle aggregates to interact with the analyte and generate large SERS signals. Either the films could be immersed in the analyte solution or 5 mu L droplets were applied to the surface; in the latter method, the local swelling caused the active area to dome upward, but the swollen film remained physically robust and could be handled as required. Importantly, encapsulation and release did not significantly compromise the SERS performance of the colloid; the signals given by the swollen films were similar to the very high signals obtained from the parent citrate-reduced colloid and were an order of magnitude larger than a commercially available nanoparticle substrate. These "Poly-SERS" films retained 70% of their SERS activity after being stored for 1 year in air. The films were sufficiently homogeneous to give a standard deviation of 3.2% in the absolute signal levels obtained from a test analyte, primarily due to the films' ability to suppress "coffee ring" drying marks, which meant that quantitative analysis without an internal standard was possible. The majority of the work used aqueous thiophenol as the test analyte; however, preliminary studies showed that the Poly-SERS films could also be used with nonaqueous solvents and for a range of other analytes including theophylline, a therapeutic drug, at a concentration as low as 1.0 x 10(-5) mol dm(-3) (1.8 mg/dm(3)), well below the sensitivity required for theophylline monitoring where the target range is 10-20 mg/dm(3).
Resumo:
With several gold nanoparticle-based therapies currently undergoing clinical trials, these treatments may soon be in the clinic as novel anticancer agents. Gold nanoparticles are the subject of a wide ranging international research effort with preclinical studies underway for multiple applications including photoablation, diagnostic imaging, radiosensitization and multifunctional drug-delivery vehicles. These applications require an increasingly complex level of surface modification in order to achieve efficacy and limit off-target toxicity. This review will discuss the main obstacles in relation to surface functionalization and the chemical approaches commonly utilized. Finally, we review a range of recent preclinical studies that aim to advance gold nanoparticle treatments toward the clinic.