65 resultados para Superconducting Qubits
Resumo:
In this paper we present an approach to quantum cloning with unmodulated spin networks. The cloner is realized by a proper design of the network and a choice of the coupling between the qubits. We show that in the case of phase covariant cloner the XY coupling gives the best results. In the 1 -> 2 cloning we find that the value for the fidelity of the optimal cloner is achieved, and values comparable to the optimal ones in the general N -> M case can be attained. If a suitable set of network symmetries are satisfied, the output fidelity of the clones does not depend on the specific choice of the graph. We show that spin network cloning is robust against the presence of static imperfections. Moreover, in the presence of noise, it outperforms the conventional approach. In this case the fidelity exceeds the corresponding value obtained by quantum gates even for a very small amount of noise. Furthermore, we show how to use this method to clone qutrits and qudits. By means of the Heisenberg coupling it is also possible to implement the universal cloner although in this case the fidelity is 10% off that of the optimal cloner.
Resumo:
We analyze the effect of a quantum error correcting code on the entanglement of encoded logical qubits in the presence of a dephasing interaction with a correlated environment. Such correlated reservoir introduces entanglement between physical qubits. We show that for short times the quantum error correction interprets such entanglement as errors and suppresses it. However, for longer time, although quantum error correction is no longer able to correct errors, it enhances the rate of entanglement production due to the interaction with the environment.
Resumo:
A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 ( R) ( 2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such a situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.
Resumo:
We discuss the quantum-circuit realization of the state of a nucleon in the scope of simple simmetry groups. Explicit algorithms are presented for the preparation of the state of a neutron or a proton as resulting from the composition of their quark constituents. We estimate the computational resources required for such a simulation and design a photonic network for its implementation. Moreover, we highlight that current work on three-body interactions in lattices of interacting qubits, combined with the measurement-based paradigm for quantum information processing, may also be suitable for the implementation of these nucleonic spin states.
Resumo:
YBaCuO films with (001) orientation have been deposited on MgO by laser ablation at 248 and 193 nm wavelengths. Transitions to zero resistance at 87 K and 90 K have been reproducibly achieved in the respective cases. Optical spectroscopic studies of the plume show the importance of molecular species in the ablation if good superconducting films are to be formed. The substrate position in the plume and substrate temperature are important in determining film quality. The influence of oxygen gas pressure can be significant. SEM studies show the occurrence of second-phase outcrops with a needle-like morphology aligned over the whole area of the film along two mutually perpendicular directions on the film surface. Film orientation is determined by XRD and R against T is measured down to 80 K in a hydrogen exchange gas cryostat. Characterization studies of device-related multilayer YBaCuO/PrBaCuO structures by XRD are presented.
Resumo:
We study the exact entanglement dynamics of two qubits in a common structured reservoir. We demonstrate that for certain classes of entangled states, entanglement sudden death occurs, while for certain initially factorized states, entanglement sudden birth takes place. The backaction of the non-Markovian reservoir is responsible for revivals of entanglement after sudden death has occurred, and also for periods of disentanglement following entanglement sudden birth.
Resumo:
The structural and magnetic properties of F16CuPc thin films and powder, including x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and theoretical modelling of exchange interactions are reported. Analysis of XRD from films, with thickness ranging between 100 and 160 nm, deposited onto Kapton and a perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) interlayer shows that the stacking angle (defined in the text) of the film is independent of the thickness, but that the texture is modified by both film thickness and substrate chemistry. The SQUID measurements suggest that all samples are paramagnetic, a result that is confirmed by our theoretical modelling including density functional theory calculations of one-dimensional molecular chains and Green's function perturbation theory calculations for a molecular dimer. By investigating theoretically a range of different geometries, we predict that the maximum possible exchange interaction between F16CuPc molecules is twice as large as that in unfluorinated copper-phthalocyanine (CuPc). This difference arises from the smaller intermolecular spacing in F16CuPc. Our density functional theory calculation for isolated F16CuPc molecule also shows that the energy levels of Kohn-Sham orbitals are rigidly shifted similar to 1 eV lower in F16CuPc compared to CuPc without a significant modification of the intramolecular spin physics, and that therefore the two molecules provide a suitable platform for independently varying magnetism and charge transport.
Resumo:
The magnetic properties of two compositions of random solutions in the TlCu2-xFexSe2 system with x = 0.2 and 0.45 have been investigated by superconducting quantum interference device magnetometry. The crystal structure is of a layer type and ordering due to the iron atoms occurs at low temperatures, with T-c = 85 K for x = 0.2 and T-c = 130 K for x = 0.45. The samples were highly textured crystals and the magnetic moments of both compositions were found to align along the c axis of the structure. The saturation moments were found to be 1.5 mu(B)/Fe x = 0.2 and 0.66 mu(B)/Fe for x = 0.45. (c) 2005 American Institute of Physics.
Resumo:
A new ternary Ir-Mn-Si phase with stoichiometry Mn3IrSi has been synthesized and found to crystallize in the cubic AlAu4-type structure, space group P213 with Z=4, which is an ordered form of the beta-Mn structure. The unit cell dimension was determined by x-ray powder diffraction to a=6.4973(3) Angstrom. In addition to the crystal structure, we have determined the magnetic structure and properties using superconducting quantum interference device magnetometry and Rietveld refinements of neutron powder diffraction data. A complex noncollinear magnetic structure is found, with magnetic moments of 2.97(4)u(B) at 10 K only on the Mn atoms. The crystal structure consists of a triangular network built up by Mn atoms, on which the moments are rotated 120degrees around the triangle axes. The magnetic unit cell is the same as the crystallographic and carries no net magnetic moment. The Neel temperature was determined to be 210 K. A first-principles study, based on density functional theory in a general noncollinear formulation, reproduces the experimental results with good agreement. The observed magnetic structure is argued to be the result of frustration of antiferromagnetic couplings by the triangular geometry.
Resumo:
We study the entanglement of two impurity qubits immersed in a Bose-Einstein condensate (BEC) reservoir. This open quantum system model allows for interpolation between a common dephasing scenario and an independent dephasing scenario by modifying the wavelength of the superlattice superposed to the BEC, and how this influences the dynamical properties of the impurities. We demonstrate the existence of rich dynamics corresponding to different values of reservoir parameters, including phenomena such as entanglement trapping, revivals of entanglement, and entanglement generation. In the spirit of reservoir engineering, we present the optimal BEC parameters for entanglement generation and trapping, showing the key role of the ultracold-gas interactions. Copyright (C) EPLA, 2013
Resumo:
We report the experimental demonstration of two quantum networking protocols, namely quantum 1 -> 3 telecloning and open-destination teleportation, implemented using a four-qubit register whose state is encoded in a high-quality two-photon hyperentangled Dicke state. The state resource is characterized using criteria based on multipartite entanglement witnesses. We explore the characteristic entanglement-sharing structure of a Dicke state by implementing high-fidelity projections of the four-qubit resource onto lower-dimensional states. Our work demonstrates for the first time the usefulness of Dicke states for quantum information processing.
Resumo:
Starting from a four-partite photonic hyper-entangled Dicke resource, we report the full tomographic characterization of three-, two-, and one-qubit states obtained by projecting out part of the computational register. The reduced states thus obtained correspond to fidelities with the expected states larger than 87%, therefore certifying the faithfulness of the entanglement-sharing structure within the original four-qubit resource. The high quality of the reduced three-qubit state allows for the experimental verification of the Koashi-Winter relation for the monogamy of correlations within a tripartite state. We show that, by exploiting the symmetries of the three-qubit state obtained upon projection over the four-qubit Dicke resource, such relation can be experimentally fully characterized using only 5 measurement settings. We highlight the limitations of such approach and sketch an experimentally-oriented way to overcome them.
Resumo:
The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer - or communication - of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments.
Resumo:
We investigate the violation of local realism in Bell tests involving homodyne measurements performed on multimode continuous-variable states. By binning the measurement outcomes in an appropriate way, we prove that the Mermin-Klyshko inequality can be violated by an amount that grows exponentially with the number of modes. Furthermore, the maximum violation allowed by quantum mechanics can be attained for any number of modes, albeit requiring a quantum state whose generation is hardly practicable. Interestingly, this exponential increase of the violation holds true even for simpler states, such as multipartite GHZ states. The resulting benefit of using more modes is shown to be significant in practical multipartite Bell tests by analyzing the increase of the robustness to noise with the number of modes. In view of the high efficiency achievable with homodyne detection, our results thus open a possible way to feasible loophole-free Bell tests that are robust to experimental imperfections. We provide an explicit example of a three-mode state (a superposition of coherent states) which results in a significantly high violation of the Mermin-Klyshko inequality (around 10%) with homodyne measurements.
Resumo:
Spin chains are promising media for short-haul quantum communication. Their usefulness is manifested in all those situations where stationary information carriers are involved. In the majority of the communication schemes relying on quantum spin chains, the latter are assumed to be finite in length, with well-addressable end-chain spins. In this paper we propose that such a configuration could actually be achieved by a mechanism that is able to effectively cut a spin ring through the insertion of bond defects. We then show how suitable physical quantities can be identified as figures of merit for the effectiveness of the cut. We find that, even for modest strengths of the bond defect, a ring is effectively cut at the defect site. In turn, this has important effects on the amount of correlations shared by the spins across the resulting chain, which we study by means of a scattering-based mechanism of a clear physical interpretation. © 2013 American Physical Society.