115 resultados para Sulphur dioxide
Resumo:
Different plasticizers, including phosphate-, phthalate-and adipate-based types were used in the creation of a range of colorimetric plastic film sensors for CO2, The different types of plasticizer used in the formulation of a colorimetric plastic film sensor for CO2 affect the response and recovery times of the sensor differently, An effective plasticizer was taken as one that decreased the response and recovery times of the final film sensor when exposed to an alternating atmosphere of 0-5% CO2. On this basis, the most efficient plasticizers appeared to be phosphate-based, followed by phthalate- and adipate-based plasticizers, This trend appears to reflect the degree of the polymer-plasticizer compatibility. Increasing the amount of plasticizer in the film formulation decreased the response and recovery times of the sensor dramatically, The sensitivity of the film sensor towards CO2 appears to decrease with increasing plasticizer effectiveness; thus, the general order of film CO2 sensitivity with respect to plasticizer type was found to be adipate > phthalate > phosphate. In general, the response of the optical films towards CO2 was found to be temperature sensitive [typically, Delta H = -(44-55) kJ mol(-1)], The phosphate-based plasticized films appear to be less temperature sensitive than the other plasticized films, and 2-ethylhexyl diphenylphosphate appears particularly effective in this respect (Delta H = -18.5 kJ mol(-1)).
Resumo:
Ultrasound promotes the reduction of hexacyanoferrate(III) by thiosulfate ions mediated by RuO2 . xH(2)O under diffusion-controlled conditions. There is a strong correlation between the measured first-order rate constant and the absorbance of the dispersion, which, in turn, is closely related to the specific surface area of the catalyst. The enhancement in rate with ultrasonic irradiation appears to be largely associated with the dispersive action of the ultrasound on the aggregated particles of RuO2 . xH(2)O. The rate of reaction increases with increasing %duty cycle and ultrasonic intensity. The measured overall activation energies for the reaction with and without ultrasound, i.e. 18 +/- 1 and 20 +/- 1 kJ mol(-1), respectively, are very similar to those expected for a diffusion-controlled reaction. The homogeneous reaction is not promoted by ultrasound.
Resumo:
Plasticized and unplasticized polymer colorimetric film sensors for gaseous CO2, containing the dye m-cresol purple, are tested as sensors for dissolved CO2. The plasticized polymer m-cresol purple film sensor develops a measurable degree of opacity when exposed to aqueous solution, especially in neutral, compared with alkaline, solution. However, it is shown that a presoaked, fogged plasticized polymer m-cresol purple film does function as a quantitative sensor for dissolved CO2 over the range 0-4% CO2. An unplasticized polymer m-cresol purple film remains largely dear upon exposure to aqueous solution and also functions as a quantitative sensor for dissolved CO2 over the range 0-4% CO2. However, in both types of films the dye interacts with electrolytes present in solution; invariably the dye appears to be converted from its initial deprotonated form (blue) to its protonated form (yellow) and the rate of this process appears to increase with increasing ionic strength, anionic charge and decreasing pH. The 90% response and recovery times for an unplasticized film are determined as 19 s(CO2:0-->5%) and 21 s (CO2:5-->3.6%), respectively.
Resumo:
The kinetics of reduction of hexacyanoferrate(III) by excess thiosulfate, mediated by RuO2.xH2O, are investigated. At high concentrations of S2O32- (0.1 mol dm-3) the kinetics of Fe(CN)63- reduction are first order with respect to [Fe(CN)63-] and [RuO2.xH2O] and independent of [Fe(CN)64-], [S2O32-] and [S4O62-]. At relatively low concentrations Of S2O32- (0.01 mol dm-3) and in the presence of appreciable concentrations of Fe(CN)64- and S4O62- (0.01 mol dm-3) the kinetics depend directly upon [Fe(CN)63-] and [RuO2.xH2O] and inversely upon [Fe(CN)64-]. Both sets of kinetics can be rationalised using an electrochemical model of redox catalysts in which a reversible reduction reaction [Fe(CN)63- + e- --> Fe(CN)64-] is coupled to an irreversible oxidation reaction (s2O32- - e- --> 1/2S4O62-), by a dispersion of RuO2.xH2O microelectrodes. At high concentrations Of S2O32- this model predicts that the kinetics of Fe(CN)63- reduction are controlled by the rate of diffusion of the Fe(CN)63- ions to the RuO2.xH2O particles. The kinetics observed at low concentrations of S2O32- are predicted by the electrochemical model, assuming that the Tafel slope for the oxidation Of S2O32- to S4O62- on the RuO2.xH2O particles is 56.4 mV decade-1.
Resumo:
The results of a kinetic study of the bleaching of the photostable dye rhodamine 6G by dissolved oxygen, photosensitized by TiO2, are reported. The observed variations in the initial rate of dye photobleaching as a function of the O2 percentage, temperature, incident light intensity and concentrations of rhodamine 6G and sacrificial electron donor are described and the results are rationalized using a proposed photochemical reaction scheme. The photosensitized bleaching of rhodamine 6G dye by TiO2 has a formal quantum yield of 2.65 X 10(-3), but the rate of complete photomineralization is about twofold slower. The overall activation energy for the semiconductor-sensitized dye photobleaching process is 15.0 +/- 1.5 kJ mol-1.
Resumo:
The basic theory behind conventional colourimetric and fluorimetric optical sensors for CO2 is examined and special attention is given to the effect on sensor response of the key parameters of initial base concentration and dye acid dissociation constant, K(D). Experimental results obtained in aqueous solution using a variety of different dyes and initial base concentrations are consistent with the predictions made by the theoretical model. A series of model-generated pK(D) versus %CO2 curves for different initial base concentrations allow those interested in constructing an optical CO2 sensor to readily identify the optimum dye/initial base combination for their sensor; the response of the sensor can be subsequently fine-tuned through a minor variation in the initial base concentration. The model and all its predictions appear also to apply to the new generation of plastic film CO2 sensors which have just been developed.
Resumo:
The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.
Resumo:
The method of preparation of a novel plastic thin-film sensor that incorporates the fluorescent dye 8-hydroxypryrene-1,3,6-trisulfonic acid is described; the shelf-life of the film is over 6 months. The results of a study on the equilibrium response of the sensor towards different levels of gaseous CO2 fit a model there is a 1 + 1 equilibrium reaction between the deprotonated form of the dye (present in the film as an ion pair) and the concentration of gaseous CO2 present. In contrast to the situation in aqueous solution, in the plastic film the pK(a) of the excited form of the dye appears close to that of the ground-state form, although this does not interfere with its use as 8 CO2 sensor. The 0 to 90% response and recovery times of the film when exposed to an alternating atmosphere of air and 5% CO2 are typically 4.3 and 7.1 s, respectively.
Resumo:
The results of a study of the variation in photocatalytic activity of TiO2, as measured by its ability to photomineralise 4-chlorophenol, as a function of temperature used to anneal the TiO2, are reported. Heat treatment of the TiO2 leads to a marked decrease in its photocatalytic activity at annealing temperatures above 600-degrees-C. This decrease is associated with a concomitant drop in the specific surface area of the TiO2, owing to particle sintering, rather than the anatase to rutile transformation, which occurs largely at temperatures above 700-degrees-C. There is a reasonable correlation between photocatalytic activity and the surface area of the aggregate particles in the dispersions of the different heat-treated TiO2 samples.
Resumo:
The kinetics of photomineralization of 4-chlorophenol (4-CP) sensitized by Degussa P25 TiO2 in O2-saturated solution is studied as a function of the following different experimental parameters: pH, [TiO2], percentage O2 [O2], [4-CP], T, I, lambda and [KNO3]. At pH 2 and T=30-degrees-C the initial relative rate of CO2 photogeneration R(CO2) conforms to a Langmuir-Hinshelwood-type kinetic scheme and the relationship between R(CO2) and the various experimental parameters may be summarized as follows: R(CO2) = gammaK(O2)[O2](I(a))(theta)K(4-CP]0/(1 + K(O2])(1 + K(4-CP)[4-CP]0) where gamma is a proportionality constant, K(O2) = 0.044 +/- 0.005[O2]-1, theta = 0.74 +/- 0.05 and K(4-CP) = (29 +/- 3) x 10(3) dm3 mol-1. The overall activation energy for this photosystem was determined as 16 +/- 2 kJ mol-1. This work forms part of an overall characterization study in which it is proposed that the 4-CP-TiO2-O2 photosystem is adopted as a standard test system for incorporation into all future semiconductor-sensitized photomineralization studies in order to facilitate comparisons between the results of the different studies.
Resumo:
The photomineralisation of 4-chlorophenol (4-CP) sensitised by Degussa P25 TiO2 in O2-saturated solution represents a possible standard test system in semiconductor-sensitised photomineralisation studies. As part of a detailed examination of this photosystem, the results of the temporal variations in the concentrations of 4-CP, CO2, Cl- and the major organic intermediates, namely, 4-chlorocatechol (4-CC), hydroquinone (HQ), benzoquinone and 4-chlororesorcinol, are reported. The observed variations in [4-CP], [4-CC], [HQ] and [CO2] fit those predicted by a kinetic model which utilises kinetic equations with a Langmuir-Hinshelwood form and assumes that there are three major possible routes in which the photogenerated hydroxyl radicals can react with 4-CP, ie. 4-CP --> 4-CC, 4-CP --> HQ and 4-CP --> (unstable intermediate) --> CO2 and that these routes have the following probabilities of occurring: 48%, 10% and 42%.
Resumo:
The results of a kinetic study of the oxidative dissolution of ruthenium dioxide hydrate to ruthenium tetroxide by periodate ions, IO4-, in acidic solution are described. The kinetics of dissolution give a good fit to a 'soft-centre' model in which the particles of RuO2.xH2O are assumed to be monodispersed, spherical but inhomogeneous in composition, comprising a difficult-to-corrode outer shell and a more easy-to-corrode inner core. In this work metaperiodate appears to act as a two-electron oxidant. The observed kinetics fit a reaction scheme in which the rate-determining step is the reaction between a surface site and an adsorbed IO4 ion and there is competitive adsorption by any IO3- present. In the absence and presence of an excess of IO3- ions, the overall activation energy for the corrosion reaction was determined to be 38 +/- 2 and 54 +/- 4 kJ mol-1, respectively.