50 resultados para Sulfate Attack
Resumo:
Depletion of highly abundant proteins is an approved step in blood plasma analysis by mass spectrometry (MS). In this study, we explored a precipitation and differential protein solubility approach as a fractionation strategy for abundant protein removal from plasma. Total proteins from plasma were precipitated with 90% saturated ammonium sulfate, followed by differential solubilization in 55% and 35% saturated ammonium sulfate solutions. Using a four hour liquid chromatography (LC) gradient and an LTQ-Orbitrap XL mass spectrometer, a total of 167 and 224 proteins were identified from the 55% and 35% ammonium sulfate fractions, whereas 235 proteins were found in the remaining protein fractions with at least two unique peptides. SDS-PAGE and exclusive total spectrum counts from LC-MS/MS analyses clearly showed that majority of the abundant plasma proteins were solubilized in 55% and 35% ammonium sulfate solutions, indicating that the remaining protein fraction is of potential interest for identification of less abundant plasma proteins. Serum albumin, serotransferrin, alpha-1-antitrypsin and transthyretin were the abundant proteins that were highly enriched in 55% ammonium sulfate fractions. Immunoglobulins, complement system proteins, and apolipoproteins were among other abundant plasma proteins that were enriched in 35% ammonium sulfate fractions. In the remaining protein fractions a total of 40 unique proteins were identified of which, 32 proteins were identified with at least 10 exclusive spectrum counts. According to PeptideAtlas, 9 of these 32 proteins were estimated to be present at low μg ml(-1) (0.12-1.9 μg ml(-1)) concentrations in the plasma, and 17 at low ng ml(-1) (0.1-55 ng ml(-1)) range.
Resumo:
In this paper we identify requirements for choosing a threat modelling formalisation for modelling sophisticated malware such as Duqu 2.0. We discuss the gaps in current formalisations and propose the use of Attack Trees with Sequential Conjunction when it comes to analysing complex attacks. The paper models Duqu 2.0 based on the latest information sourced from formal and informal sources. This paper provides a well structured model which can be used for future analysis of Duqu 2.0 and related attacks.
Resumo:
Cryptographic algorithms have been designed to be computationally secure, however it has been shown that when they are implemented in hardware, that these devices leak side channel information that can be used to mount an attack that recovers the secret encryption key. In this paper an overlapping window power spectral density (PSD) side channel attack, targeting an FPGA device running the Advanced Encryption Standard is proposed. This improves upon previous research into PSD attacks by reducing the amount of pre-processing (effort) required. It is shown that the proposed overlapping window method requires less processing effort than that of using a sliding window approach, whilst overcoming the issues of sampling boundaries. The method is shown to be effective for both aligned and misaligned data sets and is therefore recommended as an improved approach in comparison with existing time domain based correlation attacks.
Resumo:
Side channel attacks permit the recovery of the secret key held within a cryptographic device. This paper presents a new EM attack in the frequency domain, using a power spectral density analysis that permits the use of variable spectral window widths for each trace of the data set and demonstrates how this attack can therefore overcome both inter-and intra-round random insertion type countermeasures. We also propose a novel re-alignment method exploiting the minimal power markers exhibited by electromagnetic emanations. The technique can be used for the extraction and re-alignment of round data in the time domain.