186 resultados para Stynchyn van der Krone.
Resumo:
14C wiggle-match dating (WMD) of peat deposits uses the non-linear relationship between 14C age and calendar age to match the shape of a sequence of closely spaced peat 14C dates with the 14C calibration curve. A numerical approach to WMD enables the quantitative assessment of various possible wiggle-match solutions and of calendar year confidence intervals for sequences of 14C dates. We assess the assumptions, advantages, and limitations of the method. Several case-studies show that WMD results in more precise chronologies than when individual 14C dates are calibrated. WMD is most successful during periods with major excursions in the 14C calibration curve (e.g., in one case WMD could narrow down confidence intervals from 230 to 36 yr).
Resumo:
Two cores of mid-Holocene raised-bog deposits from the Netherlands were 14C wiggle-match dated at high precision. Changes in local moisture conditions were inferred from the changing species composition of consecutive series of macrofossil samples. Several wet-shifts were inferred, and these were often coeval with major rises in the D14C archive (probably caused by major declines in solar activity). The use of D14C as a proxy for changes in solar activity is validated. This paper adds to the increasing body of evidence that solar variability forced climatic changes during the Holocene.
A new spatial fix for Capitalist crisis? Immigrant labour, state borders and ostracising imperialism
Resumo:
The accuracy and reliability of popular density functional approximations for the compounds giving origin to room temperature ionic liquids have been assessed by computing the T=0 K crystal structure of several 1-alkyl-3-methyl-imidazolium salts. Two prototypical exchange-correlation approximations have been considered, i.e., the local density approximation (LDA) and one gradient corrected scheme [PBE-GGA, Phys. Rev. Lett. 77, 3865 (1996)]. Comparison with low-temperature x-ray diffraction data shows that the equilibrium volume predicted by either approximations is affected by large errors, nearly equal in magnitude (~10%), and of opposite sign. In both cases the error can be traced to a poor description of the intermolecular interactions, while the intramolecular structure is fairly well reproduced by LDA and PBE-GGA. The PBE-GGA optimization of atomic positions within the experimental unit cell provides results in good agreement with the x-ray structure. The correct system volume can also be restored by supplementing PBE-GGA with empirical dispersion terms reproducing the r-6 attractive tail of the van der Waals interactions.
Resumo:
A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the (super 14) C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).
Resumo:
We present a semiclassical complex angular momentum (CAM) analysis of the forward scattering peak which occurs at a translational collision energy around 32 meV in the quantum mechanical calculations for the F + H2(v = 0, j = 0) ? HF(v' = 2, j' = 0) + H reaction on the Stark–Werner potential energy surface. The semiclassical CAM theory is modified to cover the forward and backward scattering angles. The peak is shown to result from constructive/destructive interference of the two Regge states associated with two resonances, one in the transition state region and the other in the exit channel van der Waals well. In addition, we demonstrate that the oscillations in the energy dependence of the backward differential cross section are caused by the interference between the direct backward scattering and the decay of the two resonance complexes returning to the backward direction after one full rotation.