54 resultados para Stress-strain diagram
Resumo:
Objectives To examine whether exposure to workplace stressors predicts changes in physical activity and the risk of insufficient physical activity.
Methods Prospective data from the Finnish Public Sector Study. Repeated exposure to low job control, high job demands, low effort, low rewards and compositions of these (job strain and effort-reward imbalance) were assessed at Time 1 (2000-2002) and Time 2 (2004). Insufficient physical activity (<14 metabolic equivalent task hours per week) was measured at Time 1 and Time 3 (2008). The effect of change in workplace stressors on change in physical activity was examined using fixed-effects (within-subject) logistic regression models (N=6665). In addition, logistic regression analysis was applied to examine the associations between repeated exposure to workplace stressors and insufficient physical activity (N=13 976). In these analyses, coworker assessed workplace stressor scores were used in addition to individual level scores.
Results The proportion of participants with insufficient physical activity was 24% at baseline and 26% at follow-up. 19% of the participants who were sufficiently active at baseline became insufficiently active at follow-up. In the fixed-effect analysis, an increase in workplace stress was weakly related to an increase in physical inactivity within an individual. In between-subjects analysis, employees with repeated exposure to low job control and low rewards were more likely to be insufficiently active at follow-up than those with no reports of these stressors; fully adjusted ORs ranged from 1.11 (95% CI 1.00 to 1.24) to 1.21 (95% CI 1.05 to 1.39).
Conclusions Workplace stress is associated with a slightly increased risk of physical inactivity.
Resumo:
The application of the shape memory alloy NiTi in micro-electro-mechanical-systems (MEMSs) is extensive nowadays. In MEMS, complex while precise motion control is always vital. This makes the degradation of the functional properties of NiTi during cycling loading such as the appearance of residual strain become a serious problem to study, in particular for laser micro-welded NiTi in real applications. Although many experimental efforts have been put to study the mechanical properties of laser welded NiTi, surprisingly, up to the best of our understanding, there has not been attempts to quantitatively model the laser-welded NiTi under mechanical cycling in spite of the accurate prediction required in applications and the large number of constitutive models to quantify the thermo-mechanical behavior of shape memory alloys. As the first attempt to fill the gap, we employ a recent constitutive model, which describes the localized SIMT in NiTi under cyclic deformation; with suitable modifications to model the mechanical behavior of the laser welded NiTi under cyclic tension. The simulation of the model on a range of tensile cyclic deformation is consistent with the results of a series of experiments. From this, we conclude that the plastic deformation localized in the welded regions (WZ and HAZs) of the NiTi weldment can explain most of the extra amount of residual strain appearing in welded NiTi compared to the bare one. Meanwhile, contrary to common belief, we find that the ability of the weldment to memorize its transformation history, sometimes known as ‘return point memory’, still remains unchanged basically though the effective working limit of this ability reduces to within 6% deformation.
Resumo:
NiTi alloys have been widely used in the applications for micro-electro-mechanical-systems (MEMS), which often involve some precise and complex motion control. However, when using the NiTi alloys in MEMS application, the main problem to be considered is the degradation of functional property during cycling loading. This also stresses the importance of accurate prediction of the functional behavior of NiTi alloys. In the last two decades, a large number of constitutive models have been proposed to achieve the task. A portion of them focused on the deformation behavior of NiTi alloys under cyclic loading, which is a practical and non-negligible situation. Despite of the scale of modeling studies of the field in NiTi alloys, two experimental observations under uniaxial tension loading have not received proper attentions. First, a deviation from linearity well before the stress-induced martensitic transformation (SIMT) has not been modeled. Recent experiments confirmed that it is caused by the formation of stress-induced R phase. Second, the influence of the well-known localized Lüders-like SIMT on the macroscopic behavior of NiTi alloys, in particular the residual strain during cyclic loading, has not been addressed. In response, we develop a 1-D phenomenological constitutive model for NiTi alloys with two novel features: the formation of stress-induced R phase and the explicit modeling of the localized Lüders-like SIMT. The derived constitutive relations are simple and at the same time sufficient to describe the behavior of NiTi alloys. The accumulation of residual strain caused by R phase under different loading schemes is accurately described by the proposed model. Also, the residual strain caused by irreversible SIMT at different maximum loading strain under cyclic tension loading in individual samples can be explained by and fitted into a single equation in the proposed model. These results show that the proposed model successfully captures the behavior of R phase and the essence of localized SIMT.
Resumo:
In this study, the susceptibility to stress corrosion cracking (SCC) of laser-welded NiTi wires in Hanks’ solution at 37.5 °C was studied by the slow strain-rate test (SSRT) at open-circuit potential and at different applied anodic potentials. The weldment shows high susceptibility to SCC when the applied potential is near to the pitting potential of the heat-affected zone (HAZ). The pits formed in the HAZ become sites of crack initiation when stress is applied, and cracks propagate in an intergranular mode under the combined effect of corrosion and stress. In contrast, the base-metal is immune to SCC under similar conditions. The increase in susceptibility to SCC in the weldment could be attributed to the poor corrosion resistance in the coarse-grained HAZ.
Resumo:
We introduce a method for measuring the full stress tensor in a crystal utilising the properties of individual point defects. By measuring the perturbation to the electronic states of three point defects with C 3 v symmetry in a cubic crystal, sufficient information is obtained to construct all six independent components of the symmetric stress tensor. We demonstrate the method using photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other materials in which individual point defects can be interrogated.
Resumo:
Background: Many patients and healthcare professionals believe that work-related psychosocial stress, such as job strain, can make asthma worse, but this is not corroborated by empirical evidence. We investigated the associations between job strain and the incidence of severe asthma exacerbations in working-age European men and women. Methods: We analysed individual-level data, collected between 1985 and 2010, from 102 175 working-age men and women in 11 prospective European studies. Job strain (a combination of high demands and low control at work) was self-reported at baseline. Incident severe asthma exacerbations were ascertained from national hospitalization and death registries. Associations between job strain and asthma exacerbations were modelled using Cox regression and the study-specific findings combined using random-effects meta-analyses. Results: During a median follow-up of 10 years, 1 109 individuals experienced a severe asthma exacerbation (430 with asthma as the primary diagnostic code). In the age- and sex-adjusted analyses, job strain was associated with an increased risk of severe asthma exacerbations defined using the primary diagnostic code (hazard ratio, HR: 1.27, 95% confidence interval, CI: 1.00, 1.61). This association attenuated towards the null after adjustment for potential confounders (HR: 1.22, 95% CI: 0.96, 1.55). No association was observed in the analyses with asthma defined using any diagnostic code (HR: 1.01, 95% CI: 0.86, 1.19). Conclusions: Our findings suggest that job strain is probably not an important risk factor for severe asthma exacerbations leading to hospitalization or death.
Resumo:
In this study, the stress-corrosion cracking (SCC) behaviour of laser-welded NiTi wires before and after post-weld heat-treatment (PWHT) was investigated. The samples were subjected to slow strain rate testing (SSRT) under tensile loading in Hanks’ solution at 37.5 °C (or 310.5 K) at a constant anodic potential (200 mVSCE). The current density of the samples during the SSRT was captured by a potentiostat, and used as an indicator to determine the susceptibility to SCC. Fractography was analyzed using scanning-electron microscopy (SEM). The experimental results showed that the laser-welded sample after PWHT was immune to the SCC as evidenced by the stable current density throughout the SSRT. This is attributed to the precipitation of fine and coherent nano-sized Ni4Ti3 precipitates in the welded regions (weld zone, WZ and heat-affected zone, HAZ) after PWHT, resulting in (i) enrichment of TiO2 content in the passive film and (ii) higher resistance against the local plastic deformation in the welded regions.
Resumo:
Strain effects have a significant role in mediating classic ferroelectric behavior such as polarization switching and domain wall dynamics. These effects are of critical relevance if the ferroelectric order parameter is coupled to strain and is therefore, also ferroelastic. Here, switching spectroscopy piezoresponse force microscopy (SS-PFM) is combined with control of applied tip pressure to exert direct control over the ferroelastic and ferroelectric switching events, a modality otherwise unattainable in traditional PFM. As a proof of concept, stress-mediated SS-PFM is applied toward the study of polarization switching events in a lead zirconate titanate thin film, with a composition near the morphotropic phase boundary with co-existing rhombohedral and tetragonal phases. Under increasing applied pressure, shape modification of local hysteresis loops is observed, consistent with a reduction in the ferroelastic domain variants under increased pressure. These experimental results are further validated by phase field simulations. The technique can be expanded to explore more complex electromechanical responses under applied local pressure, such as probing ferroelectric and ferroelastic piezoelectric nonlinearity as a function of applied pressure, and electro-chemo-mechanical response through electrochemical strain microscopy.
Resumo:
We present a comprehensive study based on first-principles calculations about the interplay of four important ingredients on the electronic structure of graphene: defects + magnetism + ripples + strain. So far they have not been taken into account simultaneously in a set of ab initio calculations. Furthermore, we focus on the strain dependence of the properties of carbon monovacancies, with special attention to magnetic spin moments. We demonstrated that such defects show a very rich structural and spin phase-diagram with many spin solutions as function of strain. At zero strain the vacancy shows a spin moment of 1.5 Bohrs that increases up to 2 Bohrs with stretching. Changes are more dramatic under compression: the vacancy becomes non-magnetic under a compression larger than 2%. This transition is linked to the structural modifications associated with the formation of ripples in the graphene layer. Our results suggest that such interplay could have important implications for the design of future spintronics devices based on graphene derivatives, as for example a spin-strain switch based on vacancies.