131 resultados para Streptococcus, Asthma, Immunisation
Resumo:
Background: We investigated whether eosinophils and mast cells, found in the airways of children with wheeze, were activated during relatively asymptomatic periods.
Methods: A nonbronchoscopic bronchoalveolar lavage (BAL) procedure was performed on children presenting for an elective surgical procedure. Eosinophil-derived (eosinophil cationic protein, ECP) and mast cell-derived (histamine/tryptase) mediator concentrations were measured in the BAL fluid. A detailed history and serum immunoglobulin E were used to classify the children into four groups: atopic with and without asthma, viral-associated wheeze and normal controls.
Results: The ECP concentrations in BAL from atopic asthmatic subjects were significantly higher than those measured in BAL from normal controls (P < 0.01), no other groups differed significantly. Histamine concentrations were elevated in both the atopic asthmatic and viral-associated wheeze groups compared with controls (P < 0.02) and additionally higher concentrations were obtained in atopics with asthma compared with atopics without asthma (P < 0.03). Tryptase concentrations did not differ between groups, although the tryptase and histamine concentrations correlated significantly (r = 0.78, P < 0.0001).
Conclusions: Elevated histamine concentrations were found in children with wheeze regardless of the aetiology, whereas ECP was only elevated in those asthmatics with atopy. This suggests that even in relatively quiescent periods, there is some on going activation of airway eosinophils in children with atopic asthma.
Resumo:
Background: It seems plausible that children with atopy and persistent asthma symptoms will, like their adult counterparts, have chronic airways inflammation. However, many young children with no other atopic features have episodic wheezing that is triggered solely by viral respiratory infections. Little is known as to whether airways inflammation occurs in these two asthma patterns during relatively asymptomatic periods.
Methods: Using a non-bronchoscopic bronchoalveolar lavage (BAL) procedure on children presenting for an elective surgical procedure, this study has investigated the cellular constituents of BAL fluid in children with a history of atopic asthma (AA) non-asthmatic atopic children (NAA) or viral associated wheeze (VAW).
Results: A total of 95 children was studied: 52 with atopic asthma (8.0 years, range 1.1-15.3, 36 male), 23 with non-asthmatic atopy (median age 8.3 years, range 1.7-13.6, 11 male) and 20 with VAW (3.1 years, range 1.0-8.2, 13 male). No complications were observed during the lavage procedure and no adverse events were noted post-operatively. Total lavage fluid recovered was similar in all groups and the total cell numbers were higher in the VAW group. Eosinophil (P< 0.005) and mast cell (/'<0.05) numbers were significantly elevated in the group with atopic asthma.
Conclusions: During relatively asymptomatic periods there is on-going airways inflammation, as demonstrated by eosinophil and mast cell recruitment, in children with asthma and atopy but not in children with viral associated wheeze or atopy alone. This strongly suggests that there are different underlying pathophysiologicai mechanisms in these two groups of children who wheeze.
Resumo:
Background: In asthma there is increased expression of the Th2-type cytokine interleukin-4 (IL-4). IL-4 is important in immunoglobulin isotype switching to immunoglobulin E and adhesion of eosinophils to endothelium.
Objectives: We hypothesized that levels of IL-4 in bronchoalveolar lavage (BAL) fluid would be increased in stable, atopic asthmatic children compared with controls and that levels of its physiologic inhibitor IL-4 soluble receptor α (IL-4sRα) would be correspondingly decreased.
Methods: One hundred sixteen children attending a children's hospital for elective surgery were recruited. A nonbronchoscopic BAL was performed, and IL-4 and IL-4sRα were measured in the BAL supernatants.
Results: There was no significant difference in IL-4 concentrations between atopic asthmatic children, atopic normal controls, and nonatopic normal controls [0.13 pg/mL (0.13 to 0.87) vs 0.13 pg/mL (0.13 to 0.41) vs 0.13 pg/mL (0.13 to 0.5), P = 0.65]. IL-4sRα levels were significantly increased in asthmatic patients compared with atopic controls [6.4 pg/mL (5.0 to 25.5) vs 5.0 pg/mL (5.0 to 9.9), P = 0.018], but not when compared with the nonatopic controls [5.2 pg/mL (5.0 to 10.6), P = 0.19].
Conclusions: Contrary to expectation, IL-4sRα levels are increased in BAL from stable asthmatic children compared with nonatopic controls, and we speculate that IL-4sRα is released by inflammatory cells in the airways to limit the proinflammatory effects of IL-4.
Resumo:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899803/
Resumo:
Introduction: Refractory asthma represents a significant unmet clinical need where the evidence base for the assessment and therapeutic management is limited. The British Thoracic Society (BTS) Difficult Asthma Network has established an online National Registry to standardise specialist UK difficult asthma services and to facilitate research into the assessment and clinical management of difficult asthma.
Methods: Data from 382 well characterised patients, who fulfilled the American Thoracic Society definition for refractory asthma attending four specialist UK centres—Royal Brompton Hospital, London, Glenfield Hospital, Leicester, University Hospital of South Manchester and Belfast City Hospital—were used to compare patient demographics, disease characteristics and healthcare utilisation.
Results: Many demographic variables including gender, ethnicity and smoking prevalence were similar in UK centres and consistent with other published cohorts of refractory asthma. However, multiple demographic factors such as employment, family history, atopy prevalence, lung function, rates of hospital admission/unscheduled healthcare visits and medication usage were different from published data and significantly different between UK centres. General linear modelling with unscheduled healthcare visits, rescue oral steroids and hospital admissions as dependent variables all identified a significant association with clinical centre; different associations were identified when centre was not included as a factor.
Conclusion: Whilst there are similarities in UK patients with refractory asthma consistent with other comparable published cohorts, there are also differences, which may reflect different patient populations. These differences in important population characteristics were also identified within different UK specialist centres. Pooling multicentre data on subjects with refractory asthma may miss important differences and potentially confound attempts to phenotype this population.
Resumo:
Background: Unexplained persistent breathlessness in patients with difficult asthma despite multiple treatments is a common clinical problem. Cardiopulmonary exercise testing (CPX) may help identify the mechanism causing these symptoms, allowing appropriate management.
Methods: This was a retrospective analysis of patients attending a specialist-provided service for difficult asthma who proceeded to CPX as part of our evaluation protocol. Patient demographics, lung function, and use of health care and rescue medication were compared with those in patients with refractory asthma. Medication use 6 months following CPX was compared with treatment during CPX.
Results: Of 302 sequential referrals, 39 patients underwent CPX. A single explanatory feature was identified in 30 patients and two features in nine patients: hyperventilation (n = 14), exercise-induced bronchoconstriction (n = 8), submaximal test (n = 8), normal test (n = 8), ventilatory limitation (n = 7), deconditioning (n = 2), cardiac ischemia (n = 1). Compared with patients with refractory asthma, patients without “pulmonary limitation” on CPX were prescribed similar doses of inhaled corticosteroid (ICS) (median, 1,300 µg [interquartile range (IQR), 800-2,000 µg] vs 1,800 µg [IQR, 1,000-2,000 µg]) and rescue oral steroid courses in the previous year (median, 5 [1-6] vs 5 [1-6]). In this group 6 months post-CPX, ICS doses were reduced (median, 1,300 µg [IQR, 800-2,000 µg] to 800 µg [IQR, 400-1,000 µg]; P < .001) and additional medication treatment was withdrawn (n = 7). Patients with pulmonary limitation had unchanged ICS doses post CPX and additional therapies were introduced.
Conclusions: In difficult asthma, CPX can confirm that persistent exertional breathlessness is due to asthma but can also identify other contributing factors. Patients with nonpulmonary limitation are prescribed inappropriately high doses of steroid therapy, and CPX can identify the primary mechanism of breathlessness, facilitating steroid reduction.