48 resultados para Stochastic modeling of power systems
Resumo:
Utilization of renewable energy sources and energy storage systems is increasing with fostering new policies on energy industries. However, the increase of distributed generation hinders the reliability of power systems. In order to stabilize them, a virtual power plant emerges as a novel power grid management system. The VPP has a role to make a participation of different distributed energy resources and energy storage systems. This paper defines core technology of the VPP which are demand response and ancillary service concerning about Korea, America and Europe cases. It also suggests application solutions of the VPP to V2G market for restructuring national power industries in Korea.
Resumo:
Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.
Resumo:
Inverse analysis for reactive transport of chlorides through concrete in the presence of electric field is presented. The model is solved using MATLAB’s built-in solvers “pdepe.m” and “ode15s.m”. The results from the model are compared with experimental measurements from accelerated migration test and a function representing the lack of fit is formed. This function is optimised with respect to varying amount of key parameters defining the model. Levenberg-Marquardt trust-region optimisation approach is employed. The paper presents a method by which the degree of inter-dependency between parameters and sensitivity (significance) of each parameter towards model predictions can be studied on models with or without clearly defined governing equations. Eigen value analysis of the Hessian matrix was employed to investigate and avoid over-parametrisation in inverse analysis. We investigated simultaneous fitting of parameters for diffusivity, chloride binding as defined by Freundlich isotherm (thermodynamic) and binding rate (kinetic parameter). Fitting of more than 2 parameters, simultaneously, demonstrates a high degree of parameter inter-dependency. This finding is significant as mathematical models for representing chloride transport rely on several parameters for each mode of transport (i.e., diffusivity, binding, etc.), which combined may lead to unreliable simultaneous estimation of parameters.