73 resultados para Standardization of process
Resumo:
This paper points out a serious flaw in dynamic multivariate statistical process control (MSPC). The principal component analysis of a linear time series model that is employed to capture auto- and cross-correlation in recorded data may produce a considerable number of variables to be analysed. To give a dynamic representation of the data (based on variable correlation) and circumvent the production of a large time-series structure, a linear state space model is used here instead. The paper demonstrates that incorporating a state space model, the number of variables to be analysed dynamically can be considerably reduced, compared to conventional dynamic MSPC techniques.
Resumo:
This is the first paper that shows and theoretically analyses that the presence of auto-correlation can produce considerable alterations in the Type I and Type II errors in univariate and multivariate statistical control charts. To remove this undesired effect, linear inverse ARMA filter are employed and the application studies in this paper show that false alarms (increased Type I errors) and an insensitive monitoring statistics (increased Type II errors) were eliminated.
Resumo:
An electron beam ion trap ( EBIT) has been designed and is currently under construction for use in atomic physics experiments at the Queen's University, Belfast. In contrast to traditional EBITs where pairs of superconducting magnets are used, a pair of permanent magnets will be used to compress the electron beam. The permanent magnets have been designed in conjunction with bespoke vacuum ports to give unprecedented access for photon detection. Furthermore, the bespoke vacuum ports facillitate a versatile, reconfigurable trap structure able to accommodate various in-situ detectors and in-line charged particle analysers. Although the machine will have somewhat lower specifications than many existing EBITs in terms of beam current density, it is hoped that the unique features will facilitate a number of hitherto impossible studies involving interactions between electrons and highly charged ions. In this article the new machine's design is outlined along with some suggestions of the type of process to be studied once the construction is completed.
Resumo:
Virtual reality has a number of advantages for analyzing sports interactions such as the standardization of experimental conditions, stereoscopic vision, and complete control of animated humanoid movement. Nevertheless, in order to be useful for sports applications, accurate perception of simulated movement in the virtual sports environment is essential. This perception depends on parameters of the synthetic character such as the number of degrees of freedom of its skeleton or the levels of detail (LOD) of its graphical representation. This study focuses on the influence of this latter parameter on the perception of the movement. In order to evaluate it, this study analyzes the judgments of immersed handball goalkeepers that play against a graphically modified virtual thrower. Five graphical representations of the throwing action were defined: a textured reference level (L0), a nontextured level (L1), a wire-frame level (L2), a moving point light display (MLD) level with a normal-sized ball (L3), and a MLD level where the ball is represented by a point of light (L4). The results show that judgments made by goalkeepers in the L4 condition are significantly less accurate than in all the other conditions (p
Resumo:
Colloidal gas aphrons (CGAs) are micron-sized bubbles, which are produced by stirring a dilute surfactant solution at a high speed. In this work, CGAs have been used to clarify oily wastewater by flotation technique. The CGAs sparging rate was a critical factor that governed the efficiency of the process. A model for the determination of the mass transfer coefficient is also developed for the purpose of process design.
Resumo:
Computational fluid dynamic modelling was carried out on a series of pipe bends having R/r values of 1.3, 5, and 20, with the purpose of determining the accuracy of numerical models in predicting pressure loss data from which to inform one-dimensional loss models. Four separate turbulence models were studied: the standard k-epsilon model, realizable k-epsilon model, k-omega model, and a Reynolds stress model (RSM). The results are presented for each bend in the form of upstream and downstream pressure profiles, pressure distributions along the inner and outer walls, detailed pressure and velocity fields as well as overall loss values. In each case, measured data were presented to evaluate the predictive ability of each model. The RSM was found to perform the best, producing accurate pressure loss data for bends with R/r values of 5 and 20. For the tightest bend with an R/r value of 1.3, however, predictions were significantly worse due to the presence of flow separation, stronger pressure gradients, and high streamline curvature.
Resumo:
Molecular testing for the BCR-ABL1 fusion gene by real time quantitative polymerase chain reaction (RT-qPCR) is the most sensitive routine approach for monitoring the response to therapy of patients with chronic myeloid leukaemia. In the context of tyrosine kinase inhibitor (TKI) therapy, the technique is most appropriate for patients who have achieved complete cytogenetic remission and can be used to define specific therapeutic milestones. To achieve this effectively, standardization of the laboratory procedures and the interpretation of results are essential. We present here consensus best practice guidelines for RT-qPCR testing, data interpretation and reporting that have been drawn up and agreed by a consortium of 21 testing laboratories in the United Kingdom and Ireland in accordance with the procedures of the UK Clinical Molecular Genetics Society.
Resumo:
Deformation localisation is the main reason for material failure in cold forging of titanium alloys and is thus closely related to the production yield of cold forging. In the study of the influence of process parameters on dynamic compression, considering material constitutive behaviour, physical parameters and process parameters, a numerical dynamic compression model for titanium alloys has been constructed. By adjusting the process parameters, the severity of strain localisation and stress state in the localised zone can be controlled thus enhancing the compression performance of titanium alloys.
Resumo:
Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.
Resumo:
Sustained-release matrix tablets based on Eudragit RL and RS were manufactured by injection moulding. The influence of process temperature; matrix composition; drug load, plasticizer level; and salt form of metoprolol: tartrate (MPT), fumarate (MPF) and succinate (MPS) on ease of processing and drug release were evaluated. Formulations composed of 70/30% Eudragit RL/MPT showed the fastest drug release, substituting part of Eudragit RL by RS resulted in slower drug release, all following first-order release kinetics. Drug load only affected drug release of matrices composed of Eudragit RS: a higher MPT concentration yielded faster release rates. Adding triethyl citrate enhanced the processability, but was detrimental to long-term stability. The process temperature and plasticizer level had no effect on drug release, whereas metoprolol salt form significantly influenced release properties. The moulded tablets had a low porosity and a smooth surface morphology. A plasticizing effect of MPT, MPS and MPF on Eudragit RS and Eudragit RL was observed via DSC and DMA. Solubility parameter assessment, thermal analysis and X-ray diffraction demonstrated the formation of a solid solution immediately after production, in which H-bonds were formed between metoprolol and Eudragit as evidenced by near-infrared spectroscopy. However, high drug loadings of MPS and MPF showed a tendency to recrystallise during storage. The in vivo performance of injection-moulded tablets was strongly dependent upon drug loading. © 2012 American Association of Pharmaceutical Scientists.
Resumo:
Objectives: To evaluate the effectiveness of (1) dissemination strategies to improve clinical practice behaviors (eg, frequency and documentation of pain assessments, use of pain medication) among health care team members, and (2) the implementation of the pain protocol in reducing pain in long term care (LTC) residents. Design: A controlled before-after design was used to evaluate the effectiveness of the pain protocol, whereas qualitative interviews and focus groups were used to obtain additional context-driven data. Setting: Four LTC facilities in southern Ontario, Canada; 2 for the intervention group and 2 for the control group. Participants: Data were collected from 200 LTC residents; 99 for the intervention and 101 for the control group. Intervention: Implementation of a pain protocol using a multifaceted approach, including a site working group or Pain Team, pain education and skills training, and other quality improvement activities. Measurements: Resident pain was measured using 3 assessment tools: the Pain Assessment Checklist for Seniors with Limited Ability to Communicate, the Pain Assessment in the Communicatively Impaired Elderly, and the Present Pain Intensity Scale. Clinical practice behaviors were measured using a number of process indicators; for example, use of pain assessment tools, documentation about pain management, and use of pain medications. A semistructured interview guide was used to collect qualitative data via focus groups and interviews. Results: Pain increased significantly more for the control group than the intervention group over the 1-year intervention period. There were significantly more positive changes over the intervention period in the intervention group compared with the control group for the following indicators: the use of a standardized pain assessment tool and completed admission/initial pain assessment. Qualitative findings highlight the importance of reminding staff to think about pain as a priority in caring for residents and to be mindful of it during daily activities. Using onsite champions, in this case advanced practice nurses and a Pain Team, were key to successfully implementing the pain protocol. Conclusions: These study findings indicate that the implementation of a pain protocol intervention improved the way pain was managed and provided pain relief for LTC residents.
Resumo:
This study investigates the production of organic fertilizer using Anaerobic Digestate (as a nutrient source) and limestone powder as the raw materials. A two-level factorial experimental design was used to determine the influence of process variables on the nutrient homogeneity within the granules. Increasing the liquid-to-solid ratio during granulation resulted in increased granule nutrient homogeneity. Increasing the processing time and the impeller speed were also found to increase the nutrient homogeneity. In terms of nutrients release into deionized water, the granules effectively released both potassium and phosphate into solution. © 2012 Elsevier Ltd.
Resumo:
Mechanochemical synthesis has the potential to provide more sustainable preparative routes to catalysts than the current multistep solvent-based routes. In this review, the mechanochemical synthesis of catalysts is discussed, with emphasis placed on catalysts for environmental, energy and chemical synthesis applications. This includes the formation of mixed-metal oxides as well as the process of dispersing metals onto solid supports. In most cases the process involves no solvent. Encouragingly, there are several examples where the process is advantageous compared with the more normal solvent-based methods. This can be because of process cost or simplicity, or, notably, where it provides more active/selective catalysts than those made by conventional wet chemical methods. The need for greater, and more systematic, exploration of this currently unconventional approach to catalyst synthesis is highlighted.