67 resultados para Stains and Staining


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airway epithelial cells act as the first barrier against pathogens. These cells recognize conserved structural motifs expressed by microbial pathogens via Toll-like receptors (TLRs) expressed on the surface. In contrast to the level of expression in lymphoid cells, the level of expression of TLR2 and TLR4 in airway epithelial cells is low under physiological conditions. Here we explored whether Klebsiella pneumoniae upregulates the expression of TLRs in human airway epithelial cells. We found that the expression of TLR2 and TLR4 by A549 cells and human primary airway cells was upregulated upon infection with K. pneumoniae. The increased expression of TLRs resulted in enhancement of the cellular response upon stimulation with Pam3CSK4 and lipopolysaccharide, which are TLR2 and TLR4 agonists, respectively. Klebsiella-dependent upregulation of TLR expression occurred via a positive IkappaBalpha-dependent NF-kappaBeta pathway and via negative p38 and p44/42 mitogen-activated protein kinase-dependent pathways. We showed that Klebsiella-induced TLR2 and TLR4 upregulation was dependent on TLR activation. An isogenic capsule polysaccharide (CPS) mutant did not increase TLR2 and TLR4 expression. Purified CPS upregulated TLR2 and TLR4 expression, and polymyxin B did not abrogate CPS-induced TLR upregulation. Although no proteins were detected in the CPS preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and colloidal gold staining, we could not rule out the possibility that traces of protein in our CPS preparation could have been responsible, at least in part, for the TLR upregulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. This study evaluated the effect of transforming growth factor (TGF)-ß2 and anti-TGF-ß2 antibody in a rodent model of posterior capsule opacification (PCO). METHODS. An extracapsular lens extraction (ECLE) was performed in 72 Sprague-Dawley rats. At the end of the procedure, 10 µL TGF-ß2 (TGF-ß2-treated group), fetal calf serum (FCS)/phosphate- buffered saline (PBS; FCS/PBS-treated control group), a human monoclonal TGF-ß2 antibody (anti-TGF-ß2-treated group), or a null control IgG4 antibody (null antibody-treated control group) was injected into the capsule. Animals were killed 3 and 14 days postoperatively. Eyes were evaluated clinically prior to euthanatization, then enucleated and processed for light microscopy and immunohistochemistry afterward. PCO was evaluated clinically and histopathologically. Student's t-test and ? were used to assess differences between groups. RESULTS. There were no statistically significant clinical or histopathological differences in degree of PCO between the TGF-ß2- and FCS/PBS-treated groups at 3 and 14 days after ECLE. Nor were there differences between the anti-TGF-ß2- and the null antibody-treated groups, with the exception of the histopathology score for capsule wrinkling 3 days after ECLE (P = 0.02). a-Smooth-muscle actin staining was observed in the lens capsular bag only in areas where there was close contact with the iris. CONCLUSIONS. No sustained effect of TGF-ß2 or anti-TGF-ß2 antibody on PCO was found in rodents at the dose and timing administered in this study. Iris cells may play a role in the process of epithelial mesenchymal transition linked to PCO. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a case of Mycobacterium chelonae keratitis following corneal injury by a foreign body. Diagnosis was made by Ziehl-Neelsen staining and Lowenstein-Jensen culture of corneal scrapings. On the basis of the in vitro susceptibility testing, the patient was treated with topical fortified amikacin. Given the lack of response to this therapy, we decided to carry out a debridement of the infiltrative areas to eliminate infected tissue, and to use an amikacin-soaked collagen shield supplemented every 4 h with topical fortified amikacin to promote healing of the debrided area and to potentiate the effects of the antibiotic therapy. After this treatment, clinical resolution was observed and a further acid-fast stain and culture for mycobacterium were negative. Debridement of the infiltrative areas could be used in cases of mycobacterium keratitis when early diagnosis is made and before the corneal infection has become widespread.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-ß1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis: Blood–retina barrier leakage in diabetes results in extravasation of plasma lipoproteins. Intra-retinal modified LDLs have been implicated in diabetic retinopathy (DR), but their effects on retinal pigment epithelial (RPE) cells and the added effects of extravasated modified HDLs are unknown.

Methods: In human retinas from individuals with and without diabetes and DR, immunohistochemistry was used to detect ApoB, ApoA1 and endoplasmic reticulum (ER) stress markers. In cell culture, human RPE cells were treated with native LDL (N-LDL) or heavily-oxidised glycated LDL (HOG-LDL) with or without pretreatment with native HDL (N-HDL) or heavilyoxidised glycated HDL (HOG-HDL). Cell viability, oxidative stress, ER stress, apoptosis and autophagy were assessed by Cell Counting Kit-8 assay, dichlorofluorescein assay, western blotting, immunofluorescence and TUNEL assay. In separate
experiments, RPE cells were treated with lipid oxidation products, 7-ketocholesterol (7-KC, 5–40 µmol/l) or 4-hydroxynonenal (4-HNE, 5–80 µmol/l), with or without pretreatment with N-HDL or HOG-HDL.

Results: ApoB, ApoA1 staining and RPE ER stress were increased in the presence of DR. HOG-LDL but not N-LDL significantly decreased RPE cell viability and increased reactive oxygen species generation, ER stress, apoptosis and autophagy. Similarly, 4-HNE and 7-KC decreased viability and induced ER stress. Pretreatment with N-HDL mitigated these effects, whereas HOG-HDL was less effective by most, but not all, measures.

Conclusions/interpretation: In DR, extravascular modified LDL may promote RPE injury through oxidative stress, ER stress, autophagy and apoptosis. N-HDL has protective effects, but HOG-HDL is less effective. Extravasation and modification of HDL may modulate the injurious effects of extravasated modified LDL on the retinal pigment epithelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diblock copolymer vesicles are tagged with pH-responsive Nile Blue-based labels and used as a new type of pH-responsive colorimetric/fluorescent biosensor for far-red and near-infrared imaging of live cells. The diblock copolymer vesicles described herein are based on poly(2-(methacryloyloxy)ethyl phosphorylcholine-block-2-(diisopropylamino)ethyl methacrylate) [PMPC-PDPA]: the biomimetic PMPC block is known to facilitate rapid cell uptake for a wide range of cell lines, while the PDPA block constitutes the pH-responsive component that enables facile vesicle self-assembly in aqueous solution. These biocompatible vesicles can be utilized to detect interstitial hypoxic/acidic regions in a tumor model via a pH-dependent colorimetric shift. In addition, they are also useful for selective intracellular staining of lysosomes and early endosomes via subtle changes in fluorescence emission. Such nanoparticles combine efficient cellular uptake with a pH-responsive Nile Blue dye label to produce a highly versatile dual capability probe. This is in marked contrast to small molecule dyes, which are usually poorly uptaken by cells, frequently exhibit cytotoxicity, and are characterized by intracellular distributions invariably dictated by their hydrophilic/hydrophobic balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endocytosis of horseradish peroxidase (HRP) by the vascular cells of retinal and choroidal blood vessels was compared in immersion and perfusion fixed eyes from individual rats. The mechanisms of endocytosis of HRP appeared identical in both retinal and choroidal vessels. The bulk of internalised tracer occurred in macropinosomes 300-400 nm in diameter. Tracer was localised to a 20-30 nm layer on the internal aspect of the limiting membrane. This layer was coincident with the glycocalyx of the luminal plasma membrane as revealed by ruthenium redosmium tetroxide staining. Horseradish peroxidase was also internalised by a small scattered population of vesicles (100-130 nm in diameter). The size of these vesicles suggested that they may have arisen from clathrin coated regions of the plasma membrane. It is suggested that the endocytosis of HRP in retinal and choroidal vascular endothelium occurs as a function of plasma membrane recycling. Horseradish peroxidase may also be internalised as a 'contaminant' of the glycocalyx in coated pits involved in receptor mediated endocytosis. The smooth 80 nm plasmalemmal caveolae of the retinal and choroidal vascular endothelial cells did not appear to participate either in absorptive endocytosis or vesicular transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measles virus Edmonston strain was purified by ultrafiltration followed by two successive sedimentations through sucrose. Purified virus retained infectivity and, when used as an immunogen, elicited high titred antibody to measles antigens by conventional serology. The measles preparations were examined by SDS-PAGE followed by staining. In addition, following PAGE, the purity of these preparations was assessed immunochemically using antisera directed to measles and host cell antigens. The results of these studies demonstrate the utility of the purification method for the preparation of milligram quantities of relatively pure measles virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Kinesin family member 2a (KIF2A), a type of motor protein found in eukaryotic cells, is associated with development and progression of various human cancers. The role of KIF2A during breast cancer tumorigenesis and progression was studied.

Methods: Immunohistochemical staining, real time RT-PCR and western blot were used to examine the expression of KIF2A in cancer tissues and adjacent normal tissues from breast cancer patients. Patients' survival in relation to KIF2A expression was estimated using the Kaplan-Meier survival and multivariate analysis. Breast cancer cell line, MDA-MB-231 was used to study the proliferation, migration and invasion of cells following KIF2A-siRNA transfection.

Results: The expression of KIF2A in cancer tissues was higher than that in normal adjacent tissues from the same patient (P <0.05). KIF2A expression in cancer tissue with lymph node metastasis and HER2 positive cancer were higher than that in cancer tissue without (P <0.05). A negative correlation was found between KIF2A expression levels in breast cancer and the survival time of breast cancer patients (P <0.05). In addition, multivariate analysis indicated that KIF2A was an independent prognostic for outcome in breast cancer (OR: 16.55, 95% CI: 2.216-123.631, P = 0.006). The proliferation, migration and invasion of cancer cells in vitro were suppressed by KIF2A gene silencing (P <0.05).

Conclusions: KIF2A may play an important role in breast cancer progression and is potentially a novel predictive and prognostic marker for breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Adult granulosa cell tumours (AGCTs) are uncommon ovarian sex cord-stromal tumours which recur following surgical removal in up to 50% of patients. Treatment options for recurrent and advanced stage AGCTs are limited, with poor response to chemotherapy and radiotherapy. We aimed to assess epidermal growth factor receptor (EGFR), HER2 and insulin-like growth factor-1 receptor (IGF-1R) status in AGCTs with a view to investigating whether or not these receptors might be potential therapeutic targets in these neoplasms.

METHODS AND RESULTS: Immunohistochemical staining for EGFR, HER2 and IGF-1R was undertaken in 31 AGCTs. Tumour DNA was also analysed for mutations in the tyrosine kinase domain of EGFR (exons 18-21) by Cobas mutation RT-PCR. Twenty-three of 31 (74%) AGCTs showed some degree of EGFR expression, generally with cytoplasmic or mixed membranous and cytoplasmic staining of variable intensity. Eleven of 27 (41%) cases exhibited strong membranous and cytoplasmic expression of IGF-1R. HER2 expression was not seen. No mutations were found in exons 18-21 of the EGFR gene in hot-spots of therapeutic relevance.

CONCLUSIONS: This study raises the possibility that anti-EGFR and/or anti-IGF-1R therapies may be of potential benefit in ovarian AGCTs, and this requires further study. Lack of known mutations within the tyrosine kinase domain of EGFR suggests that EGFR-related tyrosine kinase inhibitors may not be useful therapeutically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction:
Ovarian cancer patients presenting with advanced stage (III/IV)
canceraretreatedwithcarboplatinumincombinationwithpaclitaxel.Despitea
significant initial response rate, fewer than 20% of patients become long-term
survivors. We have published that low MAD2 expression levels associate with
reduced progression free survival (PFS) in patients with high-grade serous
epithelial ovarian cancer (EOC). Moreover, we have demonstrated that MAD2
expressionisdown-regulatedbythemicroRNAmiR-433(
Furlong et al., 2011
).
Interestingly, miR-433 also down-regulates HDAC6 (
Simon et al., 2010
), which
uniquely deacetylates
a
-tubulin prior to HDAC6s binding to
b
-tubulin.
In vitro
studies have shown that HDAC6 inhibition in combination with paclitaxel
treatment enhances chemoresistant cancer cell death. To date, an interaction
between MAD2 and HDAC6 has not been reported.
Experimental design:
MAD2 and HDAC6 immunohistochemistry (IHC) and
Western blot analyses were performed to investigate the role of HDAC6 and
MAD2 in chemoresistance to paclitaxel in high-grade serous EOC.
Results and Discussion:
In vitro
experiments demonstrated that overex-
pression of pre-miR-433, which targets MAD2, resulted in down-regulation
of HDAC6 in EOC cell lines. High levels of HDAC6 are co-expressed with
MAD2 in the paclitaxel resistant UPN251 and OVCAR7 cell lines. While, all
4 paclitaxel resistant EOC cell lines express higher levels of miR-433 than
the paclitaxel sensitive A2780 cells, only ovca432 and ovca433 demonstrated
down-regulation of both HDAC6 and MAD2. Paclitaxel binds to
b
-tubulin and
causesmicrotubulepolymerizationinpaclitaxelsensitivecellsasdemonstrated
by tubulin acetylation in A2780 cells. However, paclitaxel failed to cause a
significant acetylation of
a
-tubulin and microtubule stabilisation in the resistant
UPN251 cells. Therefore resistance in this cell line may be mediated by
aberrantly high HDAC6 activity. We have previously shown that MAD2 knock-
down cells are resistant to paclitaxel (
Furlong F., et al., 2011; Prencipe M.,
et al., 2009
). We measured HDAC6 protein expression in MAD2 knockdown
cells and showed that MAD2 knockdown is associated with concomitant
up-regulation of HDAC6. We hypothesise that the up-regulation of HDAC6
by MAD2 knockdown renders cancer cells more resistant to paclitaxel and
increases the invasive potential of these cells. On-going experiments will test
this hypothesis. Lastly we have observed differential MAD2 and HDAC6 IHC
staining intensity in formalin fixed paraffin embedded EOC samples.
In conclusion
, we have reported on a novel interaction between MAD2 and
HDAC6 which may have important consequences for paclitaxel resistant EOC.
Moreover, understanding chemo-responsiveness in ovarian tumours will lead
to improved patient management and treatment options for women diagnosed
with this disease

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: We have shown previously that macrophages/microglia accumulate in the subretinal space and express CD68 and Arginase-1 in the aging eye. Subretinal macrophages are in close contact with retinal pigment epithelial (RPE) cells. We hypothesize that RPE cells may play an important role in regulating macrophage/microglial phenotype and function. The aim of this study was to investigate the effect of RPE cells on the phenotype and function of bone marrow–derived macrophages (BM-DMs).
Methods: BM-DM from C57BL/6J mice were cultured in DMEM supplemented with 20%L929 cell supernatant for 5 days. The phenotype of BM-DMs was confirmed by flow cytometry as CD11b+F4/80+. Primary RPE cells were cultured from C57BL/6J mice and confirmed by RPE65 and cytokeratin staining. BMDMs were co-cultured with different types of RPE cells (healthy, oxidized, and apoptotic RPE) and then isolated from the co-culture system for phenotypic and functional assays.
Results: Co-culture of BM-DMs with RPE cells results in a time-dependent down-regulation of MHC-II expression and the generation of CD11b+F4/80+Ly6G+ myeloid-derived suppressor cells (MDSC). qRT-PCR analysis showed that RPE-induced MDSCs expressed high levels of IL-6, IL-1β, and Arginase-1, but lower levels of IL-12p40 and TNF-a compared to naïve BM-DMs. The expression levels of iNOS, TGF-β and Ym1 did not differ 207 between naive BMDMs and RPE-induced MDSCs. Furthermore, functional studies showed that these cells had reduced phagocytic activity and lower ability to stimulate T cell activation and proliferation. When RPE cells were pre-treated with oxidized photoreceptor outer segments before co-culturing with BMDMs, the expression of IL-1β and IL-6 in BMDMs was increased whereas the expression of Arginase-1 was decreased. 
Conclusion: Our results suggest that healthy RPE cells can convert BMDMs into myeloid-derived suppressor cells under in vitro culture conditions, RPE-induced myeloid-derived suppressor cells are CD11b+F4/80+Ly6G+MHCIIlowIL6+IL1b+Arg-1+. The ability of RPE cells is reduced when suffering from oxidative insults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Cigarette smoke induces a pro-inflammatory response in airway epithelial cells but it is not clear which of the various chemicals contained within cigarette smoke (CS) should be regarded as predominantly responsible for these effects. We hypothesised that acrolein, nicotine and acetylaldehyde, important chemicals contained within volatile cigarette smoke in terms of inducing inflammation and causing addiction, have immunomodulatory effects in primary nasal epithelial cell cultures (PNECs).

Methods: PNECs from 19 healthy subjects were grown in submerged cultures and were incubated with acrolein, nicotine or acetylaldehyde prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide (PA LPS). Experiments were repeated using cigarette smoke extract (CSE) for comparison. IL-8 was measured by ELISA, activation of NF-κB by ELISA and Western blotting, and caspase-3 activity by Western blotting. Apoptosis was evaluated using Annexin-V staining and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method.

Results: CSE was pro-inflammatory after a 24 h exposure and 42% of cells were apoptotic or necrotic after this exposure time. Acrolein was pro-inflammatory for the PNEC cultures (30 μM exposure for 4 h inducing a 2.0 fold increase in IL-8 release) and also increased IL-8 release after stimulation with PA LPS. In contrast, nicotine had anti-inflammatory properties (0.6 fold IL-8 release after 50 μM exposure to nicotine for 24 h), and acetylaldehyde was without effect. Acrolein and nicotine had cellular stimulatory and anti-inflammatory effects respectively, as determined by NF-κB activation. Both chemicals increased levels of cleaved caspase 3 and induced cell death.

Conclusions: Acrolein is pro-inflammatory and nicotine anti-inflammatory in PNEC cultures. CSE induces cell death predominantly by apoptotic mechanisms. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Recent evidence suggests that neuroglial dysfunction and degeneration contributes to the etiology and progression of diabetic retinopathy. Advanced lipoxidation end products (ALEs) have been implicated in the pathology of various diseases, including diabetes and several neurodegenerative disorders. The purpose of the present study was to investigate the possible link between the accumulation of ALEs and neuroretinal changes in diabetic retinopathy.

Methods: Retinal sections obtained from diabetic rats and age-matched controls were processed for immunohistochemistry using antibodies against several well defined ALEs. In vitro experiments were also performed using a human Muller (Moorfields/Institute of Ophthalmology-Muller 1 [ MIO-M1]) glia cell line. Western blot analysis was used to measure the accumulation of the acrolein-derived ALE adduct N epsilon-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) in Muller cells preincubated with FDP-lysine-modified human serum albumin (FDP-lysine-HSA). Responses of Muller cells to FDP-lysine accumulation were investigated by analyzing changes in the protein expression of heme oxygenase-1 (HO-1), glial fibrillary acidic protein (GFAP), and the inwardly rectifying potassium channel Kir4.1. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF alpha) were determined by reverse transcriptase PCR (RT-PCR). Apoptotic cell death was evaluated by fluorescence-activated cell sorting (FACS) analysis after staining with fluorescein isothiocyanate (FITC)-labeled annexin V and propidium iodide.

Results: No significant differences in the levels of malondialdehyde-, 4-hydroxy-2-nonenal-, and 4-hydroxyhexenal-derived ALEs were evident between control and diabetic retinas after 4 months of diabetes. By contrast, FDP-lysine immunoreactivity was markedly increased in the Muller glia of diabetic rats. Time-course studies revealed that FDP-lysine initially accumulated within Muller glial end feet after only a few months of diabetes and thereafter spread distally throughout their inner radial processes. Exposure of human Muller glia to FDP-lysine-HSA led to a concentration-dependent accumulation of FDP-lysine-modified proteins across a broad molecular mass range. FDP-lysine accumulation was associated with the induction of HO-1, no change in GFAP, a decrease in protein levels of the potassium channel subunit Kir4.1, and upregulation of transcripts for VEGF, IL-6, and TNF-alpha. Incubation of Muller glia with FDP-lysine-HSA also caused apoptosis at high concentrations.

Conclusions: Collectively, these data strongly suggest that FDP-lysine accumulation could be a major factor contributing to the Muller glial abnormalities occurring in the early stages of diabetic retinopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives Chronic MRSA infection, which affects approximately 26% of CF patients in the USA, is associated with declining lung function and poor outcomes (Dasenbrook, 2010). Anaerobic niches have been described within the CF lung, potentially influencing the virulence of MRSA. This study aims to compare initial and chronic CF MRSA isolates, following aerobic and anaerobic culture. Methods Isolates, obtained from CF sputum at first isolation [“early” (n = 10)] or up to 5 years later, during chronic infection [“late” (n = 15)] were cultured in aerobic and anaerobic conditions. Differences in virulence were compared using the Galleria mellonella infection model. Biofilm formation of each isolate was assessed following staining with crystal violet. Production of Δ-haemolysin (Δ-hly), a surrogate marker for expression of the virulence regulator agr, was determined by haemolysis assay. Results MRSA grown in anaerobic conditions had significantly increased virulence in the G. mellonella model (p = 0.007), increased biofilm formation (p = 0.006) and increased Δ-hly production (p<0.0001). No significant difference between Δ-hly production or biofilm formation were observed between early and late isolates; however late isolates were found to be more virulent in the G. mellonella model (p = 0.0002). Conclusion These results suggest that an anaerobic environment, as found in the CF lung, may increase virulence of MRSA and aid in the establishment of chronic infection. Further clinical studies are required to determine how these phenotypic changes are associated with transition to chronic infection and patient outcome.