218 resultados para Squeezed States
Resumo:
We find a coupling-strength configuration for a linear chain of N spins which gives rise to simultaneous multiple Bell states. We suggest a way such an interesting entanglement pattern can be used in order to distribute maximally entangled channels to remote locations and generate multipartite entanglement with a minimum-control approach. Our proposal thus provides a way to achieve the core resources in distributed information processing. The schemes we describe can be efficiently tested in chains of coupled cavities interacting with three-level atoms.
Resumo:
Biological activities greatly influence the formation of many soils, especially forest soils under cool humid climates. The objective of this study was to investigate the effects of vegetation and soil biota on the formation of selected soils. Field morphology, micromorphology, and carbon and organic matter analysis were determined on six Podzols (Spodosols) and two Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Humification of plant material by soil fauna and fungi occurs in all organic horizons. Thick organic coatings are observed on soil peds and rock fragments from the E1 to the Bs horizon in a Haplic Podzol from Clingmans Dome Mt., TN. Thin sections reveal large accumulations of root material in different stages of decomposition in the spodic horizons of a Haplic Podzol from Whiteface Mt., NY. Organic carbon ranges from 5.4 to 8.5% in the spodic B horizons of the Whiteface Mt. Podzol. Earthworms and enchytraeids have a great effect on the structure of the surface and subsurface horizons in the Dystric Cambisols from Huntly and Clashindarroch Forests, Scotland and a Cambic Podzol from the Corrie Burn Basin, Scotland. Podzols from Speymouth Forest, Scotland (Gleyic Podzol), Cling-mans Dome Mt., and Whiteface Mt. have thick organic horizons. The Podzols from the Flatwoods in Georgia, the Pine Barrens in New Jersey, the Corrie Burn Basin, and the Cambisol from Huntly Forest have only A horizons at the surface. The Clashindarroch Forest soil has a very thin organic horizon. Warm and humid climates and sandy parent material are responsible for thick E horizons and lack of thick organic horizons in the Flatwoods (Carbic Podzol) and Pine Barrens (Ferric Podzol) soils. Earthworms and enchytraeids thrive in the Corrie Burn Basin and Huntly Forest soils due to the vegetation and the highly weathered basic parent material. The site at Clashindarroch once carried oak, and then birch forest, both of which produce a mild litter and also encourage earthworm and enchytraeids. This fauna is responsible for much mixing of the topsoil. The present conifer vegetation will eventually produce a deep litter and cause podzolization.
Resumo:
Published ab-initio and pseudopotential calculations for the dialkali halide systems suggest that the preferred co-linear geometry is for the metal to approach the metal end of the alkali halide. Here, ab-initio calculations on the Li2F system reveal that the well depth on the halide side in this radical is much deeper and is a local saddle-point associated with the ionic non-linear global minima. Although many features of the pseudopotential surfaces are confirmed, significant differences are apparent including the existence of a linear excited state instead of a triangular one, a considerably deeper global minimum some 50% lower in energy and a close approach between the X2A1 and the states, with the minimum 87 kJ mol-1 below the ground state asymptote. All the results can be rationalised as the avoided crossings between a long range, covalent potential dominant within the LiLiF geometry and an ionic state that forms the global minimum. Calculations on the 3rd 2A' potential indicate that even for Li + LiF collisions at ultracold temperatures the collision dynamics could involve as many as three electronic states.
Resumo:
Query processing over the Internet involving autonomous data sources is a major task in data integration. It requires the estimated costs of possible queries in order to select the best one that has the minimum cost. In this context, the cost of a query is affected by three factors: network congestion, server contention state, and complexity of the query. In this paper, we study the effects of both the network congestion and server contention state on the cost of a query. We refer to these two factors together as system contention states. We present a new approach to determining the system contention states by clustering the costs of a sample query. For each system contention state, we construct two cost formulas for unary and join queries respectively using the multiple regression process. When a new query is submitted, its system contention state is estimated first using either the time slides method or the statistical method. The cost of the query is then calculated using the corresponding cost formulas. The estimated cost of the query is further adjusted to improve its accuracy. Our experiments show that our methods can produce quite accurate cost estimates of the submitted queries to remote data sources over the Internet.
Resumo:
We study genuine multipartite entanglement (GME) in a system of n qubits prepared in symmetric Dicke states and subjected to the influences of noise. We provide general, setup-independent expressions for experimentally favorable tools such as fidelity- and collective spin-based entanglement witnesses, as well as entangled-class discriminators and multi-point correlation functions. Besides highlighting the effects of the environment on large qubit registers, we also discuss strategies for the robust detection of GME. Our work provides techniques and results for the experimental communities interested in investigating and characterizing multipartite entangled states by introducing realistic milestones for setup design and associated predictions.
Resumo:
We report the first experimental generation and characterization of a six-photon Dicke state. The produced state shows a fidelity of F=0.56 +/- 0.02 with respect to an ideal Dicke state and violates a witness detecting genuine six-qubit entanglement by 4 standard deviations. We confirm characteristic Dicke properties of our resource and demonstrate its versatility by projecting out four- and five-photon Dicke states, as well as four-photon Greenberger-Horne-Zeilinger and W states. We also show that Dicke states have interesting applications in multiparty quantum networking protocols such as open-destination teleportation, telecloning, and quantum secret sharing.