179 resultados para Spin excitation
Resumo:
A method for investigating the dynamics of atomic magnetic moments in current-carrying magnetic point contacts under bias is presented. This combines the nonequilibrium Green's function (NEGF) method for evaluating the current and the charge density with a description of the dynamics of the magnetization in terms of quasistatic thermally activated transitions between stationary configurations. This method is then implemented in a tight-binding (TB) model with parameters chosen to simulate the main features of the electronic structures of magnetic transition metals. We investigate the domain wall (DW) migration in magnetic monoatomic chains sandwiched between magnetic leads, and for realistic parameters find that collinear arrangement of the magnetic moments of the chain is always favorable. Several stationary magnetic configurations are identified, corresponding to a different number of Bloch walls in the chain and to a different current. The relative stability of these configurations depends on the geometrical details of the junction and on the bias; however, we predict transitions between different configurations with activation barriers of the order of a few tens of meV. Since different magnetic configurations are associated with different resistances, this suggests an intrinsic random telegraph noise at microwave frequencies in the I-V curves of magnetic atomic point contacts at room temperature. Finally, we investigate whether or not current-induced torques are conservative.
Resumo:
Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems.
Resumo:
We investigate the interplay between magnetic and structural dynamics in ferromagnetic atomic point contacts. In particular, we look at the effect of the atomic relaxation on the energy barrier for magnetic domain wall migration and, reversely, at the effect of the magnetic state on the mechanical forces and structural relaxation. We observe changes of the barrier height due to the atomic relaxation up to 200%, suggesting a very strong coupling between the structural and the magnetic degrees of freedom. The reverse interplay is weak; i.e., the magnetic state has little effect on the structural relaxation at equilibrium or under nonequilibrium, current-carrying conditions.
Resumo:
The probability of multiple ionization of krypton by 50 femtosecond circularly polarized laser pulses, independent of the optical focal geometry, has been obtained for the first time. The excellent agreement over the intensity range 100 TW cm-2 to 100 PW cm-2 with the recent predictions of Kornev et al (2003 Phys. Rev. A 68 043414) provides the first experimental confirmation that non-recollisional electronic excitation can occur in strong-field ionization. This is particularly true for higher stages of ionization, when the laser intensity exceeds 10 PW cm-2 as the energetic departure of the ionized electron(s) diabatically distorts the wavefunctions of the bound electrons. By scaling the probability of ionization by the focal volume, we discuss why this mechanism was not apparent in previous studies.
Resumo:
A hyperthermal hydrogen/deuterium atom beam source with a defined energy distribution has been employed to investigate the kinetically induced electron emission from noble metal surfaces. A monotonous increase in the emission yield was found for energies between 15 and 200 eV. This, along with an observed isotope effect, is described in terms of a model based on Boltzmann type electron energy distributions.
Resumo:
The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.