49 resultados para Spectral Element Method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is an increasing use of the discrete element method (DEM) to study cemented (e.g. concrete and rocks) and sintered particulate materials. The chief advantage of the DEM over continuum based techniques is that it does not make assumptions about how cracking and fragmentation initiate and propagate, since the DEM system is naturally discontinuous. The ability for the DEM to produce a realistic representation of a cemented granular material depends largely on the implementation of an inter-particle bonded contact model. This paper presents a new bonded contact model based on the Timoshenko beam theory which considers axial, shear and bending behaviour of the bond. The bond model was first verified by simulating both the bending and dynamic response of a simply supported beam. The loading response of a concrete cylinder was then investigated and compared with the Eurocode equation prediction. The results show significant potential for the new model to produce satisfactory predictions for cementitious materials. A unique feature of this model is that it can also be used to accurately represent many deformable structures such as frames and shells, so that both particles and structures or deformable boundaries can be described in the same DEM framework. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk handling of powders and granular solids is common in many industries and often gives rise to handling difficulties especially when the material exhibits complex cohesive behaviour. For example, high storage stresses in a silo can lead to high cohesive strength of the stored solid, which may in turn cause blockages such as ratholing or arching near the outlet during discharge. This paper presents a Discrete Element Method study of discharge of a granular solid with varying levels of cohesion from a flat-bottomed silo. The DEM simulations were conducted using the commercial EDEM code with a recently developed DEM contact model for cohesive solids implemented through an API. The contact model is based on an elasto-plastic contact with adhesion and uses hysteretic non-linear loading and unloading paths to model the elastic-plastic contact deformation. The adhesion parameter is a function of the maximum contact overlap. The model has been shown to be able to predict the stress history dependent behaviour depicted by a flow function of the material. The effects of cohesion on the discharge rate and flow pattern in the silo are investigated. The predicted discharge rates are compared for the varying levels of cohesion and the effect of adhesion is evaluated. The ability of the contact model to qualitatively predict the phenomena that are present in the discharge of a silo has been shown with the salient feature of mixed flow from a flat bottomed hopper identified in the simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During extreme sea states so called impact events can be observed on the wave energy converter Oyster. In small scale experimental tests these impact events cause high frequency signals in the measured load which decrease confidence in the data obtained. These loads depend on the structural dynamics of the model. Amplification of the loads can occur and is transferred through the structure from the point of impact to the load cell located in the foundation. Since the determination of design data and load cases for Wave Energy Converters originate from scale experiments, this lack of confidence has a direct effect on the development.

Numerical vibration analysis is a valuable tool in the research of the structural load response of Oyster to impact events, but must take into account the effect of the surrounding water. This can be done efficiently by adding an added mass distribution, computed with a linearised potential boundary element method. This paper presents the development and validation of a numerical procedure, which couples the OpenSource boundary element code NEMOH with the Finite Element Analysis tool CodeAster. Numerical results of the natural frequencies and mode shapes of the structure under the influence of added mass due to specific structural modes are compared with experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the
European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are
characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly
highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted
that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated
since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being
widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns
made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider
rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the
evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach
such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical
approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the
approach proposed by Spanos (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion
equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a
real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made
about the overturning conditions and on the effect of forcing function’s frequency.
.