106 resultados para Single Cell
Resumo:
We have used whole exome sequencing to compare a group of presentation t(4;14) with t(11;14) cases of myeloma to define the mutational landscape. Each case was characterized by a median of 24.5 exonic nonsynonymous single-nucleotide variations, and there was a consistently higher number of mutations in the t(4;14) group, but this number did not reach statistical significance. We show that the transition and transversion rates in the 2 subgroups are similar, suggesting that there was no specific mechanism leading to mutation differentiating the 2 groups. Only 3% of mutations were seen in both groups, and recurrently mutated genes include NRAS, KRAS, BRAF, and DIS3 as well as DNAH5, a member of the axonemal dynein family. The pattern of mutation in each group was distinct, with the t(4;14) group being characterized by deregulation of chromatin organization, actin filament, and microfilament movement. Recurrent RAS pathway mutations identified subclonal heterogeneity at a mutational level in both groups, with mutations being present as either dominant or minor subclones. The presence of subclonal diversity was confirmed at a single-cell level using other tumor-acquired mutations. These results are consistent with a distinct molecular pathogenesis underlying each subgroup and have important impacts on targeted treatment strategies. The Medical Research Council Myeloma IX trial is registered under ISRCTN68454111.
Resumo:
Rare cases of possible materno-fetal transmission of cancer have been recorded over the past 100 years but evidence for a shared cancer clone has been very limited. We provide genetic evidence for mother to offspring transmission, in utero, of a leukemic cell clone. Maternal and infant cancer clones shared the same unique BCR-ABL1 genomic fusion sequence, indicating a shared, single-cell origin. Microsatellite markers in the infant cancer were all of maternal origin. Additionally, the infant, maternally- derived cancer cells had a major deletion on one copy of chromosome 6p that included deletion of HLA alleles that were not inherited by the infant (i.e., foreign to the infant), suggesting a possible mechanism for immune evasion.
Resumo:
A 10 mol%Sc2O3, 1 mol%CeO2 stabilized-ZrO2 (SSZ) powder was successfully prepared using the sol-gel method. Subsequent SSZ electrolyte pellets were prepared by tape casting technique and sintered at 1400 °C, 1450 °C, 1500 °C, 1550 °C and 1600 °C. These were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). SSZ showed a pure cubic phase after sintering, the grain size of SSZ increased with the increase of sintering temperature. The SSZ sintered at 1550 °C showed the highest ion conductivity. The maximum power densities of Ni-SSZ/SSZ/La0.8Sr0.2MnO3-δ (LSM)-SSZ single cells sintered at 1550 °C were 0.18, 0.36, 0.51 and 0.72 W cm-2 at 650, 700, 750 and 800 °C, respectively. The polarization resistance (Rp) of the single cell attained 0.201 Ω cm2 at 800 °C.
Resumo:
In this paper, Sr2Fe1.5Mo0.4Nb0.1O6-δ (SFMNb)-xSm0.2Ce0.8O2-δ (SDC) (x = 0, 20, 30, 40, 50 wt%) composite cathode materials were synthesized by a one-pot combustion method to improve the electrochemical performance of SFMNb cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The fabrication of composite cathodes by adding SDC to SFMNb is conducive to providing extended electrochemical reaction zones for oxygen reduction reactions (ORR). X-ray diffraction (XRD) demonstrates that SFMNb is chemically compatible with SDC electrolytes at temperature up to 1100 °C. Scanning electron microscope (SEM) indicates that the SFMNb-SDC composite cathodes have a porous network nanostructure as well as the single phase SFMNb. The conductivity and thermal expansion coefficient of the composite cathodes decrease with the increased content of SDC, while the electrochemical impedance spectra (EIS) exhibits that SFMNb-40SDC composite cathode has optimal electrochemical performance with low polarization resistance (Rp) on the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. The Rp of the SFMNb-40SDC composite cathode is about 0.047 Ω cm2 at 800 °C in air. A single cell with SFMNb-40SDC cathode also displays favorable discharge performance, whose maximum power density is 1.22 W cm-2 at 800 °C. All results indicate that SFMNb-40SDC composite material is a promising cathode candidate for IT-SOFCs.
Resumo:
In this paper, we consider the uplink of a single-cell massive multiple-input multiple-output (MIMO) system with inphase and quadrature-phase imbalance (IQI). This scenario is of particular importance in massive MIMO systems, where the deployment of lower-cost, lower-quality components is desirable to make massive MIMO a viable technology. Particularly, we investigate the effect of IQI on the performance of massive MIMO employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that IQI can substantially downgrade the performance of MRC receivers. Moreover, a low-complexity IQI compensation scheme, suitable for massive MIMO, is proposed which is based on the IQI coefficients' estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic achievable rate and providing the asymptotic power scaling laws assuming transmission over Rayleigh fading channels with log-normal large-scale fading. Finally, we show that massive MIMO effectively suppresses the residual IQI effects, as long as, the compensation scheme is applied.
Resumo:
Massive multi-user multiple-input multiple-output (MU-MIMO) systems are cellular networks where the base stations (BSs) are equipped with hundreds of antennas, N, and communicate with tens of mobile stations (MSs), K, such that, N ≫ K ≫ 1. Contrary to most prior works, in this paper, we consider the uplink of a single-cell massive MIMO system operating in sparse channels with limited scattering. This case is of particular importance in most propagation scenarios, where the prevalent Rayleigh fading assumption becomes idealistic. We derive analytical approximations for the achievable rates of maximum-ratio combining (MRC) and zero-forcing (ZF) receivers. Furthermore, we study the asymptotic behavior of the achievable rates for both MRC and ZF receivers, when N and K go to infinity under the condition that N/K → c ≥ 1. Our results indicate that the achievable rate of MRC receivers reaches an asymptotic saturation limit, whereas the achievable rate of ZF receivers grows logarithmically with the number of MSs.
Resumo:
Acid stimulated accumulation of insoluble phosphorus within microbial cells is highly beneficial to wastewater treatment but remains largely unexplored. Using single cell analyses and next generation sequencing, the response of active polyphosphate accumulating microbial communities under conditions of enhanced phosphorus uptake under both acidic and aerobic conditions was characterised. Phosphorus accumulation activities were highest under acidic conditions (pH 5.5 > 8.5), where a significant positive effect on bioaccumulation was observed at pH 5.5 when compared to pH 8.5. In contrast to the Betaproteobacteria and Actinobacteria dominated enhanced biological phosphorus removal process, the functionally active polyP accumulators at pH 5.5 belonged to the Gammaproteobacteria, with key accumulators identified as members of the families Aeromonadaceae and Enterobacteriaceae. This study demonstrated a significant enrichment of key polyphosphate kinase and exopolyphosphatase genes within the community metagenome after acidification, concomitant with an increase in P accumulation kinetics.
Resumo:
The work presented in this article shows the power of the variable temperature, in-situ FT-IR spectroscopy system developed in Newcastle with respect to the investigation of fuel cell electro-catalysis. On the Ru(0001) electrode surface, CO co-adsorbs with the oxygen-containing adlayers to form mixed [CO+(2x2)-O(H)] domains. The electro-oxidation of the Ru(0001) surface leads to the formation of active (1x1)-O(H) domains, and the oxidation of adsorbed CO then takes place at the perimeter of these domains. At 20 degrees C, the adsorbed CO is present as rather compact islands. In contrast, at 60 degrees C, the COads is present as a relatively looser and weaker adlayer. Higher temperature was also found to facilitate the surface diffusion and oxidation of COads. No dissociation or electro-oxidation of methanol was observed at potentials below approximately 950mV; however, the Ru(0001) surface at high anodic potentials was observed to be very active. On both Pt and PtRu nanoparticle surfaces, only one linear bond CO adsorbate was formed from methanol adsorption, and the PtRu surface significantly promoted both methanol dissociative adsorption to CO and its further oxidation to CO2. Increasing temperature from 20 to 60 degrees C significantly facilitates the methanol turnover to CO2.