191 resultados para Silicone gels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicone elastomer systems have been shown to offer potential for the fabrication of medical devices and sustained release drug delivery devices comprising low molecular weight drugs and protein therapeutics. For drug delivery systems in particular, there is often no clear rationale for selection of the silicone elastomer grade, particularly in respect of optimizing the manufacturing conditions to ensure thermal stability of the active agent and short cycle times. In this study, the cure characteristics of a range of addition-cure and condensation-cure, low-consistency, implant-grade silicone elastomers, either as supplied or loaded with the model protein bovine serum albumin (BSA) and the model hydrophilic excipient glycine, were investigated using oscillatory rheology with a view to better understanding the isothermal cure characteristics. The results demonstrate the influence of elastomer type, cure temperature, protein loading, and glycine loading on isothermal cure properties. By measuring the cure time required to achieve tan delta values representative of early and late-stage cure conditions, a ratio t(1)/t(2) was defined that allowed the cure characteristics of the various systems to be compared. Sustained in vitro release of BSA from glycine-loaded silicone elastomer covered rod devices was also demonstrated over 14 days. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 2320-2327, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new vaginal ring technology, the insert vaginal ring (InVR), is presented. The InVR overcomes the current shortfall of conventional vaginal rings (VRs) that are generally ineffectual for the delivery of hydrophilic and/or macromolecular actives, including peptides, proteins and antibodies, due to their poor permeation characteristics in the hydrophobic polymeric elastomers from which VRs are usually fabricated. Release of the model protein BSA from a variety of insert matrices for the InVR is demonstrated, including modified silicone rods, directly compressed tablets and lyophilised gels, which collectively provided controlled release profiles from several hours to beyond 4 weeks. Furthermore, the InVR was shown to deliver over 1 mg of the monoclonal antibody 2F5 from a single device, offering a potential means of protecting women against the transmission of HIV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicone elastomer systems have previously been shown to offer potential for the sustained release of protein therapeutics. However, the general requirement for the incorporation of large amounts of release enhancing solid excipients to achieve therapeutically effective release rates from these otherwise hydrophobic polymer systems can detrimentally affect the viscosity of the precure silicone elastomer mixture and its curing characteristics. The increase in viscosity necessitates the use of higher operating pressures in manufacture, resulting in higher shear stresses that are often detrimental to the structural integrity of the incorporated protein. The addition of liquid silicones increases the initial tan delta value and the tan delta values in the early stages of curing by increasing the liquid character (G '') of the silicone elastomer system and reducing its elastic character (G'), thereby reducing the shear stress placed on the formulation during manufacture and minimizing the potential for protein degradation. However, SEM analysis has demonstrated that if the liquid character of the silicone elastomer is too high, the formulation will be unable to fill the mold during manufacture. This study demonstrates that incorporation of liquid hydroxy-terminated polydimethylsiloxanes into addition-cure silicone elastomer-covered rod formulations can both effectively lower the viscosity of the precured silicone elastomer and enhance the release rate of the model therapeutic protein bovine serum albumin. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic gels have been synthesized by sol–gel polycondensation of phenol (P) and formaldehyde (F) catalyzed by sodium carbonate (C). The effect of synthesis parameters such as phenol/catalyst ratio (P/C), solvent exchange liquid and drying method, on the porous structure of the gels have been investigated. The total and mesopore volumes of the PF gels increased with increasing P/C ratio in the range of P/C B 8, after this both properties started to decrease with P/C ratio for P/C[8 and the gel with P/C = 8 showed the highest total and mesopore volumes of 1.281 and 1.279 cm3 g-1 respectively. The gels prepared by freeze drying possessed significantly higher porosities than the vacuum dried gels. The pore volume and average pore diameter of the freeze dried gels were significantly higher than those of the vacuum dried gels. T-butanol emerged as the preferred solvent for the removal of water from the PF hydrogel prior to drying, as significantly higher pore volumes and specific surface areas were obtained in the corresponding dried gels. The results showed that freeze drying with t-butanol and lower P/C ratios were favourable conditions for the synthesis of highly mesoporous phenol–formaldehyde gels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid, sensitive reversed-phase high-performance liquid chromatographic method has been developed for the determination of in vitro release of 17 beta-estradiol and its ester prodrug, 17 beta-estradiol-3-acetate, from silicone intravaginal rings. Partial hydrolysis of the acetate under the aqueous conditions provided by the 1% benzalkonium chloride release medium necessitates its conversion to 17 beta-estradiol prior to HPLC analysis. Both steroid peaks have been fully resolved from the benzalkonium chloride peaks by the reported chromatographic method,which employs a C-18 bonded reversed-phase column, an acetonitrile-water (50:50, v/v) mobile phase and a UV detection wavelength of 281 nm. The peak area versus 17 beta-estradiol concentration was found to be linear over the range of 0.0137-1347 mu g ml(-1) The HPLC method has also been used to determine the silicone solubilities and diffusion coefficients of the two related steroids. The almost 100-fold increase in 17 beta-estradiol-3-acetate release from the silicone core-type intravaginal rings compared to 17 beta-estradiol is shown to be due to a 60-fold increase in silicone solubility and a one and a half-fold increase in diffusitivity. The results demonstrate that an effective estrogen replacement therapy dose of 17 beta-estradiol may be administered from a silicone intravaginal reservoir device containing the labile 17 beta-estradiol-3-acetate prodrug. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite their widespread use, there is a paucity of information concerning the effect of storage on the rheological properties of pharmaceutical gels that contain organic and inorganic additives. Therefore, this study examined the effect of storage (1 month at either 4 or 37 degrees C) on the rheological and mechanical properties of gels composed of either hydroxypropylmethylcellulose (3-5% w/w, HPMC) or hydroxyethylcellulose (3-5% w/w, HEC) and containing or devoid of dispersed organic (tetracycline hydrochloride 2% w/w) or inorganic (iron oxide 0.1% w/w) agents. The mechanical properties were measured using texture profile analysis whereas the rheological properties were analyzed using continuous shear rheometry and modeled using the Power Law model. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing polymer concentration (3-5% w/w) significantly increased the consistency, hardness, compressibility, and adhesiveness of the formulations due to increased polymer chain entanglement. Following storage (I month at 4 and 37 degrees C) the consistency and mechanical properties of additive free HPMC gets (but not HEC gels) increased, due to the time-dependent development of polymer chain entanglements. Incorporation of tetracycline hydrochloride significantly decreased and increased the rheological and mechanical properties of HPMC and HEC gels, respectively. Conversely, the incorporation of iron oxide did not affect these properties. Following storage, the rheological and mechanical properties of HPMC and HEC formulations were markedly compromised. This effect was greater following storage at 37 than at 4 degrees C and, additionally, greater in the presence of tetracycline hydrochloride than iron oxide. It is suggested that the loss of rheological/mechanical structure was due to chain depolymerization, facilitated by the redox properties of tetracycline hydrochloride and iron oxide. These observations have direct implications for the design and formulation of gels containing an active pharmaceutical ingredient. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the mechanical/textural, viscoeiastic and mucoadhesive properties of a range of aqueous gels composed of either hydroxyethylcellulose (HEC) or sodium carboxymethylcellulose (Na CMC). The mechanical/textural properties of each formulation were determined using texture profile analysis. The viscoelastic properties of each formulation were examined over a defined frequency range (0.01-1.0 Hz) using oscillatory rheometry in conjunction with stainless steel parallel plate geometry. The mucoadhesive properties of the gels were evaluated by measuring the tensile force required to overcome the gel/mucin adhesive interaction. Both gel hardness and compressibility, properties that affect the ease of product removal from a container and spreadability, increased as a function of increasing polymer concentrations. This is attributed to the effects of HEC and Na CMC on gel viscosity. Gel adhesiveness, a property related to bioadhesion, also increased as a function of polymer concentration and is attributed to the reported adhesive nature of these polymers. Increasing frequency of oscillation increased the storage and loss moduli yet decreased bath the dynamic viscosity of each gel type and also the loss tangent of HEC (but not Na CMC) gels. Therefore, following exposure to the range of oscillatory stresses that may be expected in vivo, HEC gels will be more susceptible than Na CMC gels to alterations in these rheological properties. Consequently, it would be expected that the clinical performance of HEC gels will be modified to a greater extent than Na CMC gels. In general, HEC gels exhibited a greater elastic nature than Na CMC gels over the frequency range employed for oscillation The storage and loss moduli and dynamic viscosity of both gel types increased, yet the loss tangent of both gel types decreased as a function of increasing polymer concentration. Gel mucoadhesive strength was dependent on both the time of contact of the formulation with mucin and also on polymer concentration. In conclusion, this study has characterised a number of gels containing either HEC or Na CMC in terms of their mechanical/textural, viscoelastic and mucoadhesive properties. Due to its relevance to the clinical performance, it is suggested that the information derived from these methods may be usefully combined to provide a more rational basis for the selection of polymers and their formulation as topical drug delivery systems. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. This study examined the rheological and textural characteristics (hardness, compressibilty, adhesiveness and cohesiveness) of bioadhesive oral gels containing the antimicrobial agent chlorhexidine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To formulate therapeutic proteins into polymeric devices the protein is typically in the solid state, which can be achieved by the process of freeze-drying. However, freeze-drying not only risks denaturing the protein but it can adversely affect the cure characteristics of protein-loaded silicone elastomers. This study demonstrates that a variation in the parameters of the freeze-dryer can significantly affect the residual moisture content of freeze-dried BSA, which in turn has an effect on the bulk density and flow properties of the BSA. The bulk density and flow properties of the BSA subsequently affect the cure characteristics of BSA-loaded silicone elastomers. An increase in the residual moisture content results in the freeze-dried BSA having a decreased bulk density and poor flow properties which can have a detrimental effect on the cure characteristics of a freeze-dried BSA-loaded silicone elastomer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012