149 resultados para Signal de transduction
Resumo:
In animal contests selection should favour information gathering regarding the likely costs and benefits of continued conflict, and displays may provide a means for contestants to gain information about the fighting ability or aggressive intent of competitors. However, there is debate over the reliability of such displays and low levels of deception may occur within otherwise honest signalling systems. Hermit crabs use displays involving the chelipeds during agonistic encounters. We examined how variation in chelae size in relation to body size, a determinant of fighting ability, affects their use in displays and the process and outcome of contests over gastropod shells. In accordance with deceptive use of an otherwise honest signal, we found that contestants with large chelipeds for their body size spent more time performing the cheliped presentation display. Moreover, cheliped residuals and displays influenced the escalation level of encounters. There was a positive association between cheliped displays and the occurrence of 'grappling', but a negative association between displays and the occurrence of shell fights, suggesting that displays may signal aggressive intent and a reluctance to back off or accept the more passive defender role in a fight. Furthermore, the smaller of the two contestants in shell fights had larger cheliped residuals compared to those smaller contestants not involved in shell fights, which is consistent with disrupted opponent assessment. This study adds to mounting evidence that when acting as a signaller, individuals for whom the display exaggerates competitive ability attempt to manipulate opponents, using the display more often. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Complex cell signal transduction mechanisms regulate intestinal epithelial shape, polarity, motility, organelles, cell membrane components as well as physical and mechanical properties to influence alimentary digestion, absorption, secretion, detoxification and fluid balance. Interactions between the epithelial cells and adjacent mesenchyme are central to intestinal homeostasis although the key regulatory molecules of specific differentiation steps remain unclear. Isolation and primary culture of heterotypic murine intestinal cells provides a model system for elucidation of essential molecular cross-talk between epithelium and mesenchyme that may provide several biological and practical advantages over transformed cell lines. An in vitro primary culture system for neonatal rat or mouse intestinal cells has been established that forms monolayers, expresses intestine-specific epithelial features including intestinal brush borders and appropriate hydrolase enzymes. Our studies confirm the promise of this method which may advance our understanding of heterotypic cellular interactions implicated in intestinal function and may provide important insights into the pathobiology of disease.
Resumo:
Purpose. The authors conducted an in vitro investigation of the role of Ca2+-dependent signaling in vascular endothelial growth factor (VEGF)-induced angiogenesis in the retina.
Methods. Bovine retinal endothelial cells (BRECs) were stimulated with VEGF in the presence or absence of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM; intracellular Ca2+ chelator), U73122 (phospholipase C (PLC) inhibitor), xestospongin C (Xe-C), and 2-aminoethoxydiphenyl borate (2APB) (inhibitors of inositol-1,4,5 triphosphate (IP3) signaling). Intracellular Ca2+ concentration ([Ca2+]i) was estimated using fura-2 Ca2+ microfluorometry, Akt phosphorylation quantified by Western blot analysis, and angiogenic responses assessed using cell migration, proliferation, tubulogenesis, and sprout formation assays. The effects of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 were also evaluated on VEGF-induced Akt signaling and angiogenic activity.
Results. Stimulation of BRECs with 25 ng/mL VEGF induced a biphasic increase in [Ca2+]i, with an initial transient peak followed by a sustained plateau phase. VEGF-induced [Ca2+]i increases were almost completely abolished by pretreating the cells with BAPTA-AM, U73122, Xe-C, or 2APB. These agents also inhibited VEGF-induced phosphorylation of Akt, cell migration, proliferation, tubulogenesis, and sprouting angiogenesis. KN93 was similarly effective at blocking the VEGF-induced activation of Akt and angiogenic responses.
Conclusions. VEGF increases [Ca2+]i in BRECs through activation of the PLC-IP3 signal transduction pathway. VEGF-induced phosphorylation of the proangiogenic protein Akt is critically dependent on this increase in [Ca2+]i and the subsequent activation of CaMKII. Pharmacologic inhibition of Ca2+-mediated signaling in retinal endothelial cells blocks VEGF-induced angiogenic responses. These results suggest that the PLC/IP3/Ca2+/CaMKII signaling pathway may be a rational target for the treatment of angiogenesis-related disorders of the eye.
Resumo:
In this paper, we propose a novel iterative receiver
strategy for uncoded multiple-input, multiple-output (MIMO)
systems employing improper signal constellations. The proposed
scheme is shown to achieve superior performance and faster
convergence without the loss of spectrum efficiency compared
to the conventional iterative receivers. The superiority of this
novel approach over conventional solutions is verified by both
simulation and analytical results.
Resumo:
Suppressors of cytokine signaling (SOCS) proteins are a family of proteins that are able to act in a classic negative feedback loop to regulate cytokine signal transduction. The regulation of the immune response by SOCS proteins may contribute to persistent infection or even a fatal outcome. In this study, we have investigated the induction of SOCS 1-3 after peripheral infection with West Nile virus (WNV) or tick-borne encephalitis virus (TBEV) in the murine model. We have shown that the cytokine response after infection of mice with WNV or TBEV induces an upregulation in the brain of mRNA transcripts for SOCS 1 and SOCS 3, but not SOCS 2. We hypothesize that SOCS proteins may play a role in limiting cytokine responses in the brain as a neuroprotective mechanism, which may actually enhance the ability of neuroinvasive viruses such as WNV and TBEV to spread and cause disease.
Resumo:
alpha 1-antichymotrypsin (AACT) is a serine protease inhibitor that has been associated with amyloid plaques in the brains of patients with Alzheimer's disease (AD). It has been reported that AACT serum levels are higher in AD patients than in age and sex matched controls. In addition, polymorphisms in the signal peptide and 5' of the AACT gene have been reported to increase the risk of developing AD, Serum AACT has also been suggested to be associated with cognitive decline in elderly subjects. Our objective was to investigate whether a relationship existed between serum AACT levels, AACT genotypes and risk for AD in a case control association study using 108 clinically well defined late onset AD cases and 108 age and sex matched controls from Northern Ireland. We also wished to determine whether higher serum AACT affected levels of cognition as had been previously reported. Serum AACT levels were found to bet significantly raised in cases compared to controls (t = 3.8, df = 209, p