196 resultados para Session Initiation Protocol
Resumo:
Summary
Decolonisation may reduce the risk of meticillin-resistant Staphylococcus aureus (MRSA) infection in individual carriers and prevent transmission to other patients. The aims of this prospective cohort study were to determine the long-term efficacy of a standardised decolonisation regimen and to identify factors associated with failure. Patients colonised with MRSA underwent decolonisation, which was considered to be successful if there was no growth in three consecutive sets of site-specific screening swabs obtained weekly post treatment. If patients were successfully decolonised, follow-up cultures were performed 6 and 12 months later. Of 137 patients enrolled, 79 (58%) were successfully decolonised. Of these 79, 53 (67%) and 44 (56%) remained decolonised at 6 and 12 months respectively. Therefore only 44/137 (32%) patients who completed decolonisation were MRSA negative 12 months later. Outcome was not associated with a particular strain of MRSA. Successful decolonisation was less likely in patients colonised with a mupirocin-resistant isolate (adjusted odds ratio: 0.08; 95% confidence interval: 0.02–0.30), in patients with throat colonisation (0.22; 0.07–0.68) and in patients aged >80 years (0.30; 0.10–0.93) compared with those aged 60–80 years. These findings suggest that although initially successful in some cases, the protocol used did not result in long-term clearance of MRSA carriage for most patients.
Resumo:
Traditional Time Division Multiple Access (TDMA) protocol provides deterministic periodic collision free data transmissions. However, TDMA lacks flexibility and exhibits low efficiency in dynamic environments such as wireless LANs. On the other hand contention-based MAC protocols such as the IEEE 802.11 DCF are adaptive to network dynamics but are generally inefficient in heavily loaded or large networks. To take advantage of the both types of protocols, a D-CVDMA protocol is proposed. It is based on the k-round elimination contention (k-EC) scheme, which provides fast contention resolution for Wireless LANs. D-CVDMA uses a contention mechanism to achieve TDMA-like collision-free data transmissions, which does not need to reserve time slots for forthcoming transmissions. These features make the D-CVDMA robust and adaptive to network dynamics such as node leaving and joining, changes in packet size and arrival rate, which in turn make it suitable for the delivery of hybrid traffic including multimedia and data content. Analyses and simulations demonstrate that D-CVDMA outperforms the IEEE 802.11 DCF and k-EC in terms of network throughput, delay, jitter, and fairness.
Resumo:
Synchronous islanded operation involves continuously holding an islanded power network in virtual synchronism with the main power system to aid paralleling and avoid potentially damaging out-of-synchronism reclosure. This requires phase control of the generators in the island and the transmission of a reference signal from a secure location on the main power system. Global positioning system (GPS) time-synchronized phasor measurements transmitted via an Internet protocol (IP) are used for the reference signal. However, while offering low cost and a readily available solution for distribution networks, IP communications have variable latency and are susceptible to packet loss, which can make time-critical control applications difficult. This paper investigates the ability of the phase-control system to tolerate communications latency. Phasor measurement conditioning algorithms that can tolerate latency are used in the phase-control loop of a 50-kVA diesel generator. © 2010 IEEE.
Resumo:
In this paper, the performance of the network coded amplify-forward cooperative protocol is studied. The use of network coding can suppress the bandwidth resource consumed by relay transmission, and hence increase the spectral efficiency of cooperative diversity. A distributed strategy of relay selection is applied to the cooperative scheme, which can reduce system overhead and also facilitate the development of the explicit expressions of information metrics, such as outage probability and ergodic capacity. Both analytical and numerical results demonstrate that the proposed protocol can achieve large ergodic capacity and full diversity gain simultaneously.
Resumo:
The provision of security in mobile ad hoc networks is of paramount importance due to their wireless nature. However, when conducting research into security protocols for ad hoc networks it is necessary to consider these in the context of the overall system. For example, communicational delay associated with the underlying MAC layer needs to be taken into account. Nodes in mobile ad hoc networks must strictly obey the rules of the underlying MAC when transmitting security-related messages while still maintaining a certain quality of service. In this paper a novel authentication protocol, RASCAAL, is described and its performance is analysed by investigating both the communicational-related effects of the underlying IEEE 802.11 MAC and the computational-related effects of the cryptographic algorithms employed. To the best of the authors' knowledge, RASCAAL is the first authentication protocol which proposes the concept of dynamically formed short-lived random clusters with no prior knowledge of the cluster head. The performance analysis demonstrates that the communication losses outweigh the computation losses with respect to energy and delay. MAC-related communicational effects account for 99% of the total delay and total energy consumption incurred by the RASCAAL protocol. The results also show that a saving in communicational energy of up to 12.5% can be achieved by changing the status of the wireless nodes during the course of operation. Copyright (C) 2009 G. A. Safdar and M. P. O'Neill (nee McLoone).