61 resultados para Sensory defects
Resumo:
Familial hypercholesterolemia (FH) is a common single gene disorder, which predisposes to coronary artery disease. In a previous study, we have shown that in patients with definite FH around 20% had no identifiable gene defect after screening the entire exon coding area of the low density lipoprotein receptor (LDLR) and testing for the common Apolipoprotein B (ApoB) R3500Q mutation. In this study, we have extended the screen to additional families and have included the non-coding intron splice regions of the gene. In families with definite FH (tendon xanthoma present, n = 68) the improved genetic screening protocol increased the detection rate of mutations to 87%. This high detection rate greatly enhances the potential value of this test as part of a clinical screening program for FH. In contrast, the use of a limited screen in patients with possible FH (n = 130) resulted in a detection rate of 26%, but this is still of significant benefit in diagnosis of this genetic condition. We have also shown that 14% of LDLR defects are due to splice site mutations and that the most frequent splice mutation in our series (c.1845 + 11 c > g) is expressed at the RNA level. In addition, DNA samples from the patients in whom no LDLR or ApoB gene mutations were found, were sequenced for the NARC-1 gene. No mutations were identified which suggests that the role of NARC-1 in causing FH is minor. In a small proportion of families (
Resumo:
Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Despite being largely characterised as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with "hyperdexterity" witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardised assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being 'secondary' level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential route of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis.
Resumo:
Paradoxical kinesia describes the motor improvement in Parkinson's disease (PD) triggered by the presence of external sensory information relevant for the movement. This phenomenon has been puzzling scientists for over 60 years, both in neurological and motor control research, with the underpinning mechanism still being the subject of fierce debate. In this paper we present novel evidence supporting the idea that the key to understanding paradoxical kinesia lies in both spatial and temporal information conveyed by the cues and the coupling between perception and action. We tested a group of 7 idiopathic PD patients in an upper limb mediolateral movement task. Movements were performed with and without a visual point light display, travelling at 3 different speeds. The dynamic information presented in the visual point light display depicted three different movement speeds of the same amplitude performed by a healthy adult. The displays were tested and validated on a group of neurologically healthy participants before being tested on the PD group. Our data show that the temporal aspects of the movement (kinematics) in PD can be moderated by the prescribed temporal information presented in a dynamic environmental cue. Patients demonstrated a significant improvement in terms of movement time and peak velocity when executing movement in accordance with the information afforded by the point light display, compared to when the movement of the same amplitude and direction was performed without the display. In all patients we observed the effect of paradoxical kinesia, with a strong relationship between the perceptual information prescribed by the biological motion display and the observed motor performance of the patients. © 2013 Elsevier B.V. All rights reserved.
Resumo:
We introduce a method for measuring the full stress tensor in a crystal utilising the properties of individual point defects. By measuring the perturbation to the electronic states of three point defects with C 3 v symmetry in a cubic crystal, sufficient information is obtained to construct all six independent components of the symmetric stress tensor. We demonstrate the method using photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other materials in which individual point defects can be interrogated.
Resumo:
NAD(P)H quinone oxidoreductase 1 is involved in antioxidant defence and protection from cancer, stabilizing the apoptosis regulator p53 towards degradation. Here, we studied the enzymological, biochemical and biophysical properties of two cancer-associated variants (p.R139W and p.P187S). Both variants (especially p.187S) have lower thermal stability and greater susceptibility to proteolysis compared to the wild-type. p.P187S also has reduced activity due to a lower binding affinity for the FAD cofactor as assessed by activity measurements and direct titrations. Native gel electrophoresis and dynamic light scattering also suggest that p.P187S has a higher tendency to populate unfolded states under native conditions. Detailed thermal stability studies showed that all variants irreversibly denature causing dimer dissociation, while addition of FAD restores the stability of the polymorphic forms to wild-type levels. The kinetic destabilization induced by polymorphisms as well as the kinetic protection exerted by FAD was confirmed by measuring denaturation kinetics at temperatures close to physiological. Our data suggest that the main molecular mechanisms associated with these cancer-related variants are their low binding affinity for FAD and/or kinetic instability. Thus, pharmacological chaperones may be useful in the treatment of patients bearing these polymorphisms.
Resumo:
Spatial variability of conductivity in ceria is explored using scanning probe microscopy (SPM) with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggests the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor (MIEC) systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.
Resumo:
Introduction: Chitons (Polyplacophora) are molluscs considered to have a simple nervous system without cephalisation. The position of the class within Mollusca is the topic of extensive debate and neuroanatomical characters can provide new sources of phylogenetic data as well as insights into the fundamental biology of the organisms. We report a new discrete anterior sensory structure in chitons, occurring throughout Lepidopleurida, the order of living chitons that retains plesiomorphic characteristics.
Results: The novel "Schwabe organ" is clearly visible on living animals as a pair of streaks of brown or purplish pigment on the roof of the pallial cavity, lateral to or partly covered by the mouth lappets. We describe the histology and ultrastructure of the anterior nervous system, including the Schwabe organ, in two lepidopleuran chitons using light and electron microscopy. The oesophageal nerve ring is greatly enlarged and displays ganglionic structure, with the neuropil surrounded by neural somata. The Schwabe organ is innervated by the lateral nerve cord, and dense bundles of nerve fibres running through the Schwabe organ epithelium are frequently surrounded by the pigment granules which characterise the organ. Basal cells projecting to the epithelial surface and cells bearing a large number of ciliary structures may be indicative of sensory function. The Schwabe organ is present in all genera within Lepidopleurida (and absent throughout Chitonida) and represents a novel anatomical synapomorphy of the clade.
Conclusions: The Schwabe organ is a pigmented sensory organ, found on the ventral surface of deep-sea and shallow water chitons; although its anatomy is well understood, its function remains unknown. The anterior commissure of the chiton oesophagial nerve ring can be considered a brain. Our thorough review of the chiton central nervous system, and particularly the sensory organs of the pallial cavity, provides a context to interpret neuroanatomical homology and assess this new sense organ.
Resumo:
We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were used within each channel (gain 1 and 1.6). ASD participants showed greater postural sway when information from proprioceptive and both channels were inaccurate. In addition, control participants' ellipse area at gain 1.6 was identical to ASD participants' at gain 1, reflecting hyper-reactivity in ASD. Our results provide evidence for hyper-reactivity in posture-related sensory information, which reflects a general, rather than channel-specific sensory integration impairment in ASD.
Resumo:
Background: Sensory neurones from the trigeminal nerve innervate the oro-facial region and teeth. Transient receptor potential channels (TRPs) expressed by these neurones are responsible for relaying sensory information such as changes in ambient temperature, mechanical sensations and pain. Study of TRP channel expression and regulation in human sensory neurones therefore merits investigation to improve our understanding of allodynia and hyperalgesia. Objective: The objective of this study was to differentiate human dental pulp stem cells (hDPSCs) towards a neuronal phenotype (peripheral neuronal equivalents; PNEs) and employ this model to study TRP channel sensitisation. Method: hDPSCs were enriched by preferential adhesion to fibronectin, plated on coverslips (thickness 0) coated with poly-l-ornithine and laminin and then differentiated for 7 days in neurobasal A medium with additional supplementation. A whole cell patch clamp technique was used to investigate whether TRP channels on PNE membranes were modulated in the presence of nerve growth factor (NGF). PNEs were treated with NGF for 20 minutes immediately before experimentation and then stimulated for TRPA1 activity using cinnamaldehyde. Peak currents were read at 80 mV and -80 mV and compared to peak currents recorded in untreated PNEs. Data were analysed and plotted using Clampfit9 software (Molecular Devices, Sunnyvale, California, USA). Result: Results showed for the first time that pre-treatment of PNEs by NGF produced significantly larger inward and outward currents demonstrating that TRPA1 channels on PNE membranes were capable of becoming sensitised following treatment with NGF. Conclusion: Sensitisation of TRPA1 by NGF provides evidence of a mechanism for rapid neuronal sensitisation that is independent of TRPA1 gene expression
Resumo:
BACKGROUND: Prostate cancer is a heterogeneous disease, but current treatments are not based on molecular stratification. We hypothesized that metastatic, castration-resistant prostate cancers with DNA-repair defects would respond to poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibition with olaparib.
METHODS: We conducted a phase 2 trial in which patients with metastatic, castration-resistant prostate cancer were treated with olaparib tablets at a dose of 400 mg twice a day. The primary end point was the response rate, defined either as an objective response according to Response Evaluation Criteria in Solid Tumors, version 1.1, or as a reduction of at least 50% in the prostate-specific antigen level or a confirmed reduction in the circulating tumor-cell count from 5 or more cells per 7.5 ml of blood to less than 5 cells per 7.5 ml. Targeted next-generation sequencing, exome and transcriptome analysis, and digital polymerase-chain-reaction testing were performed on samples from mandated tumor biopsies.
RESULTS: Overall, 50 patients were enrolled; all had received prior treatment with docetaxel, 49 (98%) had received abiraterone or enzalutamide, and 29 (58%) had received cabazitaxel. Sixteen of 49 patients who could be evaluated had a response (33%; 95% confidence interval, 20 to 48), with 12 patients receiving the study treatment for more than 6 months. Next-generation sequencing identified homozygous deletions, deleterious mutations, or both in DNA-repair genes--including BRCA1/2, ATM, Fanconi's anemia genes, and CHEK2--in 16 of 49 patients who could be evaluated (33%). Of these 16 patients, 14 (88%) had a response to olaparib, including all 7 patients with BRCA2 loss (4 with biallelic somatic loss, and 3 with germline mutations) and 4 of 5 with ATM aberrations. The specificity of the biomarker suite was 94%. Anemia (in 10 of the 50 patients [20%]) and fatigue (in 6 [12%]) were the most common grade 3 or 4 adverse events, findings that are consistent with previous studies of olaparib.
CONCLUSIONS: Treatment with the PARP inhibitor olaparib in patients whose prostate cancers were no longer responding to standard treatments and who had defects in DNA-repair genes led to a high response rate. (Funded by Cancer Research UK and others; ClinicalTrials.gov number, NCT01682772; Cancer Research UK number, CRUK/11/029.).