120 resultados para Semigroups of Operators
Resumo:
Let A be a self-adjoint operator on a Hilbert space. It is well known that A admits a unique decomposition into a direct sum of three self-adjoint operators A(p), A(ac) and A(sc) such that there exists an orthonormal basis of eigenvectors for the operator A(p) the operator A(ac) has purely absolutely continuous spectrum and the operator A(sc) has purely singular continuous spectrum. We show the existence of a natural further decomposition of the singular continuous component A c into a direct sum of two self-adjoint operators A(sc)(D) and A(sc)(ND). The corresponding subspaces and spectra are called decaying and purely non-decaying singular subspaces and spectra. Similar decompositions are also shown for unitary operators and for general normal operators.
Resumo:
We introduce and characterise time operators for unilateral shifts and exact endomorphisms. The associated shift representation of evolution is related to the spectral representation by a generalized Fourier transform. We illustrate the results for a simple exact system, namely the Renyi map.
Resumo:
A bounded linear operator $T$ on a Banach space $X$ is called frequently hypercyclic if there exists $x\in X$ such that the lower density of the set $\{n\in\N:T^nx\in U\}$ is positive for any non-empty open subset $U$ of $X$. Bayart and Grivaux have raised a question whether there is a frequently hypercyclic operator on any separable infinite dimensional Banach space. We prove that the spectrum of a frequently hypercyclic operator has no isolated points. It follows that there are no frequently hypercyclic operators on all complex and on some real hereditarily indecomposable Banach spaces, which provides a negative answer to the above question.
Resumo:
We determine the cyclic behaviour of Volterra composition operators, which are defined as $(V_\phif)(x) =\int_0^{\phi(x)}f(t) dt$, $f ? L^p[0, 1]$, 1\leq p <\infty$,
where $?$ is a measurable self-map of [0, 1]. The cyclic behaviour of $V_\phi$ is essentially determined by the behaviour of the inducing symbol $\phi$ at 0 and at 1. As a particular result, we provide new examples of quasinilpotent supercyclic operators, which extend and complement previous ones of Hector Salas.
Resumo:
Let T be a compact disjointness preserving linear operator from C0(X) into C0(Y), where X and Y are locally compact Hausdorff spaces. We show that T can be represented as a norm convergent countable sum of disjoint rank one operators. More precisely, T = Snd ?hn for a (possibly finite) sequence {xn }n of distinct points in X and a norm null sequence {hn }n of mutually disjoint functions in C0(Y). Moreover, we develop a graph theoretic method to describe the spectrum of such an operator
Resumo:
Belief merging operators combine multiple belief bases (a profile) into a collective one. When the conjunction of belief bases is consistent, all the operators agree on the result. However, if the conjunction of belief bases is inconsistent, the results vary between operators. There is no formal manner to measure the results and decide on which operator to select. So, in this paper we propose to evaluate the result of merging operators by using three ordering relations (fairness, satisfaction and strength) over operators for a given profile. Moreover, a relation of conformity over operators is introduced in order to classify how well the operator conforms to the definition of a merging operator. By using the four proposed relations we provide a comparison of some classical merging operators and evaluate the results for some specific profiles.