85 resultados para Schrodinger-Poisson equation
Resumo:
The nonlinear interaction between magnetic-field-aligned coherent whistlers and dust-acoustic perturbations (DAPs) in a magnetized dusty plasma is considered. The interaction is governed by a pair of equations consisting of a nonlinear Schrodinger equation for the modulated whistler wave packet and an equation for the nonresonant DAPs in the presence of the ponderomotive force generated by the whistlers. The coupled equations are employed to investigate the occurrence of modulational instability, in addition to the formation of whistler envelope solitons. This investigation is relevant to amplitude modulated electron whistlers in magnetized space dusty plasmas. (c) 2005 American Institute of Physics.
Resumo:
Theoretical and numerical studies are presented of the amplitude modulation of ion-acoustic waves (IAWs) in a plasma consisting of warm ions, Maxwellian electrons, and a cold electron beam. Perturbations parallel to the carrier IAW propagation direction have been investigated. The existence of four distinct linear ion acoustic modes is shown, each of which possesses a different behavior from the modulational stability point of view. The stability analysis, based on a nonlinear Schrodinger equation (NLSE) reveals that the IAW may become unstable. The stability criteria depend on the IAW carrier wave number, and also on the ion temperature, the beam velocity and the beam electron density. Furthermore, the occurrence of localized envelope structures (solitons) is investigated, from first principles. The numerical analysis shows that the two first modes (essentially IAWs, modified due to the beam) present a complex behavior, essentially characterized by modulational stability for large wavelengths and instability for shorter ones. Dark-type envelope excitations (voids, holes) occur in the former case, while bright-type ones (pulses) appear in the latter. The latter two modes are characterized by an intrinsic instability, as the frequency develops a finite imaginary part for small ionic temperature values. At intermediate temperatures, both bright- and dark-type excitations may exist, although the numerical landscape is intertwined between stability and instability regions.(c) 2006 American Institute of Physics.
Resumo:
A pair plasma consisting of two types of ions, possessing equal masses and opposite charges, is considered. The nonlinear propagation of modulated electrostatic wave packets is studied by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasiacoustic lower moddfe and a Langmuir-like, as optic-type upper one, in agreement with experimental observations and theoretical predictions. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scale technique, the basic set of model equations is reduced to a nonlinear Schrodinger equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower (acoustic) mode is stable and may propagate in the form of a dark-type envelope soliton (a void) modulating a carrier wave packet, while the upper linear mode is intrinsically unstable, and may favor the formation of bright-type envelope soliton (pulse) modulated wave packets. These results are relevant to recent observations of electrostatic waves in pair-ion (fullerene) plasmas, and also with respect to electron-positron plasma emission in pulsar magnetospheres. (c) 2006 American Institute of Physics.
Resumo:
The amplitude modulation of dust lattice waves (DLWs) propagating in a two-dimensional hexagonal dust crystal is investigated in a continuum approximation, accounting for the effect of dust charge polarization (dressed interactions). A dusty plasma crystalline configuration with constant dust grain charge and mass is considered. The dispersion relation and the group velocity for DLWs are determined for wave propagation in both longitudinal and transverse directions. The reductive perturbation method is used to derive a (2+1)-dimensional nonlinear Schrodinger equation (NLSE). New expressions for the coefficients of the NLSE are derived and compared, for a Yukawa-type potential energy and for a
Resumo:
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schrodinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the
Resumo:
The nonlinear dynamics of a rotating magnetoplasma consisting of electrons, positrons and stationary positive ions is considered. The basic set of hydrodynamic and Poisson equations are reduced to a Zakharov-Kuznetsov (ZK) equation for the electric potential. The ZK equation is solved by applying an improved modified extended tanh-function method (2008 Phys. Lett. A 372 5691) and its characteristics are investigated. A set of new solutions are derived, including localized solitary waves, periodic nonlinear waveforms and divergent (explosive) pulses. The characteristics of these nonlinear excitations are investigated in detail.
Resumo:
Starting from Maxwell's equations, we use the reductive perturbation method to derive a second-order and a third-order nonlinear Schrodinger equation, describing ultrashort solitons in nonlinear left-handed metamaterials. We find necessary conditions and derive exact bright and dark soliton solutions of these equations for the electric and magnetic field envelopes.
Resumo:
A multiple scales technique is employed to solve the fluid-Maxwell equations describing a weakly nonlinear circularly polarized electromagnetic pulse in magnetized plasma. A nonlinear Schrodinger-type (NLS) equation is shown to govern the amplitude of the vector potential. The conditions for modulational instability and for the existence of various types of localized envelope modes are investigated in terms of relevant parameters. Right-hand circularly polarized (RCP) waves are shown to be modulationally unstable regardless of the value of the ambient magnetic field and propagate as bright-type solitons. The same is true for left-hand circularly polarized (LCP) waves in a weakly to moderately magnetized plasma. In other parameter regions, LCP waves are stable in strongly magnetized plasmas and may propagate as dark-type solitons (electric field holes). The evolution of envelope solitons is analyzed numerically, and it is shown that solitons propagate in magnetized plasma without any essential change in amplitude and shape. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The amplitude modulation of ion-acoustic waves IS investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrodinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (mu), for a given value of the hot-to-cold electron density ratio (nu): favors instability. The role of the ion temperature is also discussed. In the limiting case nu = 0 (or nu -> infinity). which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.
Resumo:
The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.
Resumo:
We consider the derivation of a kinetic equation for a charged test particle weakly interacting with an electrostatic plasma in thermal equilibrium, subject to a uniform external magnetic field. The Liouville equation leads to a generalized master equation to second order in the `weak' interaction; a Fokker-Planck-type equation then follows as a `Markovian' approximation. It is shown that such an equation does not preserve the positivity of the distribution function f(x,v;t). By applying techniques developed in the theory of open systems, a correct Fokker-Planck equation is derived. Explicit expressions for the diffusion and drift coefficients, depending on the magnetic field, are obtained.
Resumo:
This paper aims at providing a better insight into the 3D approximations of the wave equation using compact finite-difference time-domain (FDTD) schemes in the context of room acoustic simulations. A general family of 3D compact explicit and implicit schemes based on a nonstaggered rectilinear grid is analyzed in terms of stability, numerical error, and accuracy. Various special cases are compared and the most accurate explicit and implicit schemes are identified. Further considerations presented in the paper include the direct relationship with other numerical approaches found in the literature on room acoustic modeling such as the 3D digital waveguide mesh and Yee's staggered grid technique.
Resumo:
The evolution of a two level system with a slowly varying Hamiltonian, modeled as a spin 1/2 in a slowly varying magnetic field, and interacting with a quantum environment, modeled as a bath of harmonic oscillators is analyzed using a quantum Langevin approach. This allows to easily obtain the dissipation time and the correction to the Berry phase in the case of an adiabatic cyclic evolution.
Resumo:
The nonlinear dynamics of electrostatic solitary waves in the form of localized modulated wavepackets is investigated from first principles. Electron-acoustic (EA) excitations are considered in a two-electron plasma, via a fluid formulation. The plasma, assumed to be collisionless and uniform (unmagnetized), is composed of two types of electrons (inertial cold electrons and inertialess kappa-distributed superthermal electrons) and stationary ions. By making use of a multiscale perturbation technique, a nonlinear Schrodinger equation is derived for the modulated envelope, relying on which the occurrence of modulational instability (MI) is investigated in detail. Stationary profile localized EA excitations may exist, in the form of bright solitons (envelope pulses) or dark envelopes (voids). The presence of superthermal electrons modifies the conditions for MI to occur, as well as the associated threshold and growth rate. The concentration of superthermal electrons (i.e., the deviation from a Maxwellian electron distribution) may control or even suppress MI. Furthermore, superthermality affects the characteristics of solitary envelope structures, both qualitatively (supporting one or the other type, for different.) and quantitatively, changing their characteristics (width, amplitude). The stability of bright and dark-type nonlinear structures is confirmed by numerical simulations.
Resumo:
In nature there are ubiquitous systems that can naturally approach critical states, The Langevin equation in the discrete version can be used to describe a class of critical processes, which are characterized by power-law behaviors and scaling relations. As an example, we present a simple model for a clinical thermometer, whose reading cannot fall even when its temperature decreases. The fibers bundle model and the spring-block model are also shown to belong to such a class.