58 resultados para Salmonella poona
Resumo:
The Yersinia pseudotuberculosis chromosome contains a seven-gene polycistronic unit (the pmrF operon) whose products share extensive homologies with their pmrF counterparts in Salmonella enterica serovar Typhimurium (S. typhimurium), another Gram-negative bacterial enteropathogen. This gene cluster is essential for addition of 4-aminoarabinose to the lipid moiety of LPS, as demonstrated by MALDI-TOF mass spectrometry of lipid A from both wild-type and pmrF-mutated strains. As in S. typhimurium, 4-aminoarabinose substitution of lipid A contributes to in vitro resistance of Y. pseudotuberculosis to the antimicrobial peptide polymyxin B. Whereas pmrF expression in S. typhimurium is mediated by both the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems, it appears to be PmrA-PmrB-independent in Y. pseudotuberculosis, with the response regulator PhoP interacting directly with the pmrF operon promoter region. This result reveals that the ubiquitous PmrA-PmrB regulatory system controls different regulons in distinct bacterial species. In addition, pmrF inactivation in Y. pseudotuberculosis has no effect on bacterial virulence in the mouse, again in contrast to the situation in S. typhimurium. The marked differences in pmrF operon regulation in these two phylogenetically close bacterial species may be related to their dissimilar lifestyles.
Resumo:
The hydrophobic probe N-phenyl-1-naphthylamine accumulated less in non-pathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 degrees C than at 26 degrees C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 degrees C. Gelliquid-crystalline phase transitions (Tc 28-31 degrees C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 degrees C, with no differences between non-pathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 degrees C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.
Phage Display-Derived Binders Able to Distinguish Listeria monocytogenes from Other Listeria Species
Resumo:
The objective of this study was to produce phage display-derived binders with the ability to distinguish Listeria monocytogenes from other Listeria spp., which may have potential utility to enhance detection of Listeria monocytogenes. To obtain binders with the desired binding specificity a series of surface and solution phage-display biopannings were performed. Initially, three rounds of surface biopanning against gamma-irradiated L. monocytogenes serovar 4b cells were performed followed by an additional surface biopanning round against L. monocytogenes 4b which included prior subtraction biopanning against gamma-irradiated L. innocua cells. In an attempt to further enhance binder specificity for L. monocytogenes 4b two rounds of solution biopanning were performed, both rounds included initial subtraction solution biopanning against L. innocua. Subsequent evaluations were performed on the phage clones by phage binding ELISA. All phage clones tested from the second round of solution biopanning had higher specificity for L. monocytogenes 4b than for L. innocua and three other foodborne pathogens (Salmonella spp., Escherichia coli and Campylobacter jejuni). Further evaluation with five other Listeria spp. revealed that one phage clone in particular, expressing peptide GRIADLPPLKPN, was highly specific for L. monocytogenes with at least 43-fold more binding capability to L. monocytogenes 4b than to any other Listeria sp. This proof-of-principle study demonstrates how a combination of surface, solution and subtractive biopanning was used to maximise binder specificity. L. monocytogenes-specific binders were obtained which could have potential application in novel detection tests for L. monocytogenes, benefiting both the food and medical industries. © 2013 Morton et al.
Resumo:
Biotransformation of acridine, dictamnine and 4-chlorofuro[2,3-b]quinolone, using whole cells of Sphingomonas yanoikuyae B8/36, yielded five enantiopure cyclic cis-dihydrodiols, from biphenyl dioxygenase-catalysed dihydroxylation of the carbocyclic rings. cis-Dihydroxylation of the furan ring in dictamnine and 4-chlorofuro[2,3-b] quinoline, followed by ring opening and reduction, yielded two exocyclic diols. The structures and absolute configurations of metabolites have been determined by spectroscopy and stereochemical correlation methods. Enantiopure arene oxide metabolites of acridine and dictamnine have been synthesised, from the corresponding cis-dihydrodiols. The achiral furoquinoline alkaloids robustine, gamma-fagarine, haplopine, isohaplopine-3,3'-dimethylallylether and pteleine have been obtained, from either cis-dihydrodiol, catechol or arene oxide metabolites of dictamnine.
Resumo:
Purpose: Inhibitors of intestinal alpha-glucosidases are used therapeutically to treat type 2 diabetes mellitus. Bacteria such as Actinoplanes sp. naturally produce potent alpha-glucosidase inhibitor compounds, including the most widely available drug acarbose. It is not known whether lactic acid bacteria (LAB) colonising the human gut possess inhibitory potential against glucosidases. Hence, the study was undertaken to screen LABs having inherent alpha- and beta-glucosidase inhibitory potential. Methods: This study isolated, screened, identified and extracted Lactobacillus strains (Lb1–15) from human infant faecal samples determining their inhibitory activity against intestinal maltase, sucrase, lactase and amylase. Lactobacillus reference strains (Ref1–7), a Gram positive control (Ctrl1) and two Gram negative controls (Ctrl2–3), were also analysed to compare activity. Results: Faecal isolates were identified by DNA sequencing, with the majority identified as unique strains of Lactobacillus plantarum. Some strains (L. plantarum, L. fermentum, L. casei and L. rhamnosus) had potent and broad spectrum inhibitory activities (up to 89 %; p < 0.001; 500 mg/ml wet weight) comparable to acarbose (up to 88 %; p < 0.001; 30 mg/ml). Inhibitory activity was concentration-dependent and was freely available in the supernatant, and was not present in other bacterial genera (Bifidobacterium bifidum and Escherichia coli or Salmonella typhimurium). Interestingly, the potency and spectrum of inhibitory activity across strains of a single species (L. plantarum) differed substantially. Some Lactobacillus extracts had broader spectrum activities than acarbose, effectively inhibiting beta-glucosidase activity (lactase) as well as alpha-glucosidase activities (maltase, sucrase and amylase). Anti-diabetic potential was indicated by the fact that oral gavage with a L. rhamnosus extract (1 g/kg) was able to reduce glucose excursions (Area under curve; 22 %; p < 0.05) in rats during a carbohydrate challenge (starch; 2 g/kg). Conclusion: These results definitively demonstrate that Lactobacillus strains present in the human gut have alpha- and beta-glucosidase inhibitory activities and can reduce blood glucose responses in vivo. Although the potential use of LAB such as Lactobacillus as a dietary supplement, medicinal food or biotherapeutic for diabetes is uncertain, such an approach might offer advantages over drug therapies in terms of broader spectrum activities and fewer unpleasant side effects. Further characterisation of this bioactivity is warranted, and chronic studies should be undertaken in appropriate animal models or diabetic subjects.
Resumo:
A constructed wetland at Greenmount College, Co. Antrim, N. Ireland was built in 2004 to study the treatment of ‘dirty water’ effluent from the Greenmount dairy unit. The effluent has a mean BOD5 of c.1000 mg/L and contains milking parlour wash-water and runoff from silage clamps and yard areas lightly contaminated with cattle manure. The nominal water retention time of this wetland is 100 days. The primary purposes of the wetland are to eliminate organic pollution and eutrophication risk from nitrogen and phosphorus compounds. However the wetland should also effectively remove any zoonotic pathogens present in manure and milk. Accordingly, a 12-month microbiological survey of water in the five ponds of the wetland commenced in August 2007. The aims of the survey are to determine changes, as effluent passes through the wetland system, in a broad range of indicator organisms (faecal coliforms, Escherichia coli, Enterococcus faecalis and Clostridium perfringens) and the occurrence of several pathogens - Salmonella, Campylobacter, Cryptosporidium and Mycobacterium avium subsp. paratuberculosis (Map). The highest indicator organism counts - E. coli and faecal coliforms, 103-104 CFU/ml - are observed in pond 1, and a significant reduction (1-3 log10) in all indicator organisms occurs as water passes through the wetland from pond 1 to pond 5. Hence the wetland is efficient at reducing levels of indicator organisms in the dairy effluent. Salmonella and Campylobacter spp. are being detected intermittently in all the ponds, whilst Cryptosporidium and Map have yet to be detected, and so the ability of the wetland to reduce/eliminate specific pathogens is less clear at present.
Resumo:
To develop a detection method for human pathogenic Listeria monocytogenes, novel specific antibodies were obtained from hybridoma libraries generated by using formalin-killed and heat-killed L. monocytogenes as immunogens. Several monoclonal antibodies found to be specific to Listeria spp or L. monocytogenes were evaluated for their applicability as binders for bead array and sandwichELISA for detection of L. monocytogenes in buffer and in 11 different food types. The bead array format consistently demonstrated lower detection limits and was less affected by interference from food matrices than the sandwich ELISA format. However, the obtained detection limits were not sufficient to satisfy the required standard for L. monocytogenes testing. Therefore, the international organizationfor standardization (ISO 11290-1:1996) methods for pre-enrichment and enrichment were employed to increase the bacteria numbers. When compared to the standard plating method, the bead array was able to detect the bacteria with the same accuracy even at the 1 CFU level after only 24 hours of the enrichment period. In addition, Listeria-specific 3C3 and L. monocytogenes-specific 7G4 antibodies were successfully employed to construct a multiplex detection for Listeria, Salmonella and Campylobacter in a bead array format by combining with commercial Salmonella-specific and available Campylobacter-specific antibodies.
Resumo:
Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins.
Resumo:
The current study sought to assess the importance of three common variables on the outcome of TiO2 photocatalysis experiments with bacteria. Factors considered were (a) ability of test species to withstand osmotic pressure, (b) incubation period of agar plates used for colony counts following photocatalysis and (c) chemical nature of suspension medium used for bacteria and TiO2. Staphylococcus aureus, Escherichia coli, Salmonella ser. Typhimurium and Pseudomonas aeruginosa were found to vary greatly in their ability to withstand osmotic pressure, raising the possibility that osmotic lysis may be contributing to loss of viability in some photocatalytic disinfection studies. Agar plate incubation time was also found to influence results, as bacteria treated with UV light only grew more slowly than those treated with a combination of UV and TiO2. The chemical nature of the suspension medium used was found to have a particularly pronounced effect upon results. Greatest antibacterial activity was detected when aqueous sodium chloride solution was utilised, with ∼1 × 106 CFU mL-1 S. aureus being completely killed after 60 min. Moderate activity was observed when distilled water was employed with bacteria being killed after 2 h and 30 min, and no antibacterial activity at all was detected when aqueous tryptone solution was used. Interestingly, the antibacterial activity of UV light on its own appeared to be very much reduced in experiments where aqueous sodium chloride was employed instead of distilled water.
Resumo:
TiO2 photocatalysis has demonstrated efficacy as a treatment process for water contaminated with chemical pollutants. When exposed to UVA light TiO2 also demonstrates an effective bactericidal activity. The mechanism of this process has been reported to involve attack by valence band generated hydroxyl radicals. In this study when three common bacterial pathogens, Escherichia coli, Salmonella enterica serovar Enteritidis and Pseudomonas aeruginosa, were exposed to TiO2 and UVA light a substantial decrease in bacterial numbers was observed. Control experiments in which all three pathogens were exposed to UVA light only resulted in a similar reduction in bacterial numbers. Moreover, exposure to UVA light alone resulted in the production of a smaller than average colony phenotype among the surviving bacteria, for all three pathogens examined, a finding which was not observed following treatment with UVA and TiO2. Small slow growing colonies have been described for several pathogenic bacteria and are referred to as small colony variants. Several studies have demonstrated an association between small colony variants and persistent, recurrent and antibiotic resistant infections. We propose that the production of small colony variants of pathogenic bacteria following UVA treatment of drinking water may represent a health hazard. As these small colony variants were not observed with the UVA/TiO2 system this potential hazard is not a risk when using this technology. It would also appear that the bactericidal mechanism is different with the UVA/TiO2 process compared to when UVA light is used alone.
Resumo:
ArnT is a glycosyltransferase that catalyses the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipid A moiety of the lipopolysaccharide. This is a critical modification enabling bacteria to resist killing by antimicrobial peptides. ArnT is an integral inner membrane protein consisting of 13 predicted transmembrane helices and a large periplasmic C-terminal domain. We report here the identification of a functional motif with a canonical consensus sequence DEXRYAX(5)MX(3)GXWX(9)YFEKPX(4)W spanning the first periplasmic loop, which is highly conserved in all ArnT proteins examined. Site-directed mutagenesis demonstrated the contribution of this motif in ArnT function, suggesting that these proteins have a common mechanism. We also demonstrate that the Burkholderia cenocepacia and Salmonella enterica serovar Typhimurium ArnT C-terminal domain is required for polymyxin B resistance in vivo. Deletion of the C-terminal domain in B. cenocepacia ArnT resulted in a protein with significantly reduced in vitro binding to a lipid A fluorescent substrate and unable to catalyse lipid A modification with L-Ara4N. An in silico predicted structural model of ArnT strongly resembled the tertiary structure of Campylobacter lari PglB, a bacterial oligosaccharyltransferase involved in protein N-glycosylation. Therefore, distantly related oligosaccharyltransferases from ArnT and PglB families operating on lipid and polypeptide substrates, respectively, share unexpected structural similarity that could not be predicted from direct amino acid sequence comparisons. We propose that lipid A and protein glycosylation enzymes share a conserved catalytic mechanism despite their evolutionary divergence.
Resumo:
This study rigorously evaluated a previously developed immunobead array method to simultaneously detect three important foodborne pathogens, Campylobacter jejuni, Listeria monocytogenes, and Salmonella spp., for its actual application in routine food testing. Due to the limitation of the detection limit of the developed method, an enrichment step was included in this study by using Campylobacter Enrichment Broth for C. jejuni and Universal Pre-enrichment Broth for L. monocytogenes and Salmonella spp.. The findings show that the immunobead array method was capable of detecting as low as 1 CFU of the pathogens spiked in the culture media after being cultured for 24 hours for all three pathogens. The immunobead array method was further evaluated for its pathogen detection capabilities in ready-to-eat (RTE) and ready-to-cook (RTC) chicken samples and proven to be able to detect as low as 1 CFU of the pathogens spiked in the food samples after being cultured for 24 hours in the case of Salmonella spp., and L. monocytogenes and 48 hours in the case of C. jejuni. The method was subsequently validated with three types of chicken products (RTE, n=30; RTC, n=20; raw chicken, n=20) and was found to give the same results as the conventional plating method. Our findings demonstrated that the previously developed immunobead array method could be used for actual food testing with minimal enrichment period of only 52 hours, whereas the conventional ISO protocols for the same pathogens take 90-144 hours. The immunobead array was therefore an inexpensive, rapid and simple method for the food testing.
Resumo:
The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation, and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.